前言

列式文件,顾名思义就是按列存储到文件,和行式存储文件对应。保证了一列在一个文件中是连续的。下面从parquet常见术语,核心schema和文件结构来深入理解。最后通过java api完成write和read。

 

术语

block

parquet层面和row group是一个意思

 

row group

逻辑概念,用于对row进行分区。由数据集中每个column的column chunk组成。是读写过程中的缓存单元,一般在hdfs上推荐一个block为1GB,一个HDFS文件1个bolock

 

column chunk

某个column的所有数据被称为column chunk,存在与row group,并保证在文件中是连续的

 

page

多个column chunk之间用page分开,也就是说一个page只会包含一个column的数据,一个page是一个独立的单元(可以被编码或者压缩)

 

dictionary page

每个page之前都可以选择是否需要dictionary page。dictionary page记录了该page所有不同的值。这可以增强处理速度提高压缩率。

 

总结

一个文件由多个row group组成,一个row group包括了多个column chunk,一个column chunck就是某个column的所有数据集, 被分割成多个page,一个page是最小的处理单元,可以被编码或者压缩。

 

schema

每种文件都有自己特有的规则,像csv文件,是用分隔符分隔开的一个个列。parquet文件也有自己独特的schema格式。

这是一个parquet文件的schema例子,对应的api是MessageType

message person{
  required binary name (UTF8);
  required int age;
  repeated group family{
    required binary father (UTF8);
    required binary mother (UTF8);
    optional binary sister (UTF8);
  }
}

 

message

固定声明,就像结构体中的struct一样。

 

person

message name,可以粗暴的理解为表名,因为里面都是field。

 

optional,required,repeated

这是三种field的关键字,分别表示可选,必选,可重复选

可选和必选类似数据库中的nullable,可重复选是为了支持复杂的嵌套结构。

 

field类型

目前parquet支持int32,int64,int96(有些系统会把时间戳存成int96如老版本hive),float,double,boolean,binary,fixed_len_byte_array。

参考类org.apache.parquet.schema. PrimitiveType.PrimitiveTypeName

 

UTF8

field的原始类型(Original Type),可以辅助field的type进行细粒度的类型判断。

参考类 org.apache.parquet.schema. OriginalType

 

group

嵌套结构声明,类似json对象

 

schema&数据

schema有了,那如何把schema和数据关联起来,也就是说可以通过schema构建或者解析出相应的数据。那就引出了嵌套关系,definition level和repetitional level。用于定位数据到底出现在嵌套中(如果有嵌套的话)的哪一层。值得注意的是,嵌套关系是针对列而言的,不同列有各自的嵌套关系。

 

definition level

optional字段定位,如果实际没有数据就为0,有数据就为1。涉及到嵌套optional,那么可以这么理解,如果从某一层开始没有该数据,那么该层之前肯定是有数据的,该层之后肯定没有数据。举个简单的例子

message ExampleDefinitionLevel {
  optional group a {
    optional group b {
      optional string c;
    }
  }
}

这个schema对应的definition level所有的可能性如表所示

 

 

repetition level

repeated字段定位,如果在嵌套中某一层出现了值,那么就记录该层。那一个例子来说:

message AddressBook {
  required string owner;
  repeated string ownerPhoneNumbers;
  repeated group contacts {
    required string name;
    optional string phoneNumber;
  }
}

针对不同的列,defnition level和repetition level的最大值如表

 

 

文件结构

结构图

 

 

详细

一个parquet文件由3部分组成,header,blocks,footer。类似一般文档中的页眉,正文,页脚。

 

header

只包含4个字节的魔数,PAR1

 

blocks

block定义参考“术语”

 

footer

记录了该parquet文件正文所有metadata,

 

文件物理格式

通过 cat -v 查看一个parquet,会看到很多的non-printable字符,比如:^U^@^U^P^U^P,^U^B^U^@^

这些字符其实是可以和ascii互相映射,比如^@就是ascii中的0,详细可以看这篇文档

https://docstore.mik.ua/orelly/unix/upt/ch25_07.htm

其实就是八进制的ascii,小于100的+100,大于100的减100。

 

所有的列,包括嵌套结构,例如test.c1和test.c2属于两个列,都是连续存储在parquet文件中。

 

参考资料

// twitter对parquet的概述

https://blog.twitter.com/engineering/en_us/a/2013/announcing-parquet-10-columnar-storage-for-hadoop.html

// parquet的github

https://github.com/apache/parquet-format

// 很详细的parquet文件解析

http://www.infoq.com/cn/articles/in-depth-analysis-of-parquet-column-storage-format

 

coding

 

public static MessageType getMessageTypeFromCode(){
    MessageType messageType =
            Types.buildMessage()
            .required(PrimitiveType.PrimitiveTypeName.BINARY).as(OriginalType.UTF8).named("id")
            .required(PrimitiveType.PrimitiveTypeName.BINARY).as(OriginalType.UTF8).named("name")
            .required(PrimitiveType.PrimitiveTypeName.INT32).named("age")
            .requiredGroup()
              .required(PrimitiveType.PrimitiveTypeName.BINARY).as(OriginalType.UTF8).named("test1")
              .required(PrimitiveType.PrimitiveTypeName.BINARY).as(OriginalType.UTF8).named("test2")
              .named("group1")
            .named("trigger");
    return messageType;
}

public static void writeParquet(String name){

    // 1. 声明parquet的messageType
    MessageType messageType = getMessageTypeFromCode();
    System.out.println(messageType.toString());

    // 2. 声明parquetWriter
    Path path = new Path("/tmp/etl/"+ name);
    Configuration configuration = new Configuration();
    GroupWriteSupport.setSchema(messageType, configuration);
    GroupWriteSupport writeSupport = new GroupWriteSupport();

    // 3. 写数据
    ParquetWriter<Group> writer = null;
    try {
        writer = new ParquetWriter<Group>(path,
                ParquetFileWriter.Mode.CREATE,
                writeSupport,
                CompressionCodecName.UNCOMPRESSED,
                128*1024*1024,
                5*1024*1024,
                5*1024*1024,
                ParquetWriter.DEFAULT_IS_DICTIONARY_ENABLED,
                ParquetWriter.DEFAULT_IS_VALIDATING_ENABLED,
                ParquetWriter.DEFAULT_WRITER_VERSION,
                configuration);
        Random random = new Random();

        for(int i=0; i<10; i++){
            // 4. 构建parquet数据,封装成group
            Group group = new SimpleGroupFactory(messageType).newGroup();
            group.append("name", i+"@qq.com")
                    .append("id",i+"@id")
                    .append("age",i)
            .addGroup("group1")
                    .append("test1", "test1"+i)
                    .append("test2","test2"+i);
            writer.write(group);
        }
    } catch (IOException e) {
        e.printStackTrace();
    } finally {
        if(writer != null){
            try {
                writer.close();
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
    }

}


public static void readParquet(String name){
    // 1. 声明readSupport
    GroupReadSupport groupReadSupport = new GroupReadSupport();
    Path path = new Path("/tmp/etl/"+name);

    // 2.通过parquetReader读文件
    ParquetReader<Group>reader = null;
    try {
        reader = ParquetReader.builder(groupReadSupport, path).build();
        Group group = null;
        while ((group = reader.read()) != null){
            System.out.println(group);
        }

    } catch (IOException e) {
        e.printStackTrace();
    } finally {
        if(reader != null){
            try {
                reader.close();
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
    }
}

 

版权声明:本文为ulysses-you原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:http://www.cnblogs.com/ulysses-you/p/7985240.html