概述

前几天的 Windows Developer Day 正式发布了 Windows AI Platform,而作为 Windows AI Platform 的模型定义和训练,更多还是需要借助云端来实现。Azure 无疑是一个很好的选择。

Azure 作为微软近几年主推的云服务,在 AI 和 Machine Learning 方面也处于领先水平。目前 Azure 提供的 AI 能力涵盖了机器视觉、语义语音、语言理解、语言翻译、认知服务等各个领域。它们大多以封装的 API 出现,开发者不需要关心训练数据集的采集,不需要关心训练过程和训练后的数据模型,只需要调用 API,输入你的数据拿到理想的输出就可以了,可以说是非常方便了,比如 Azure 的 Face API、Computer Vision API 等。但是,如果我们的数据集不是通用数据集,我们想使用自定义的特征,制定自己的分类呢?这种封装好的 API 似乎就不那么适合了。

针对这种场景,微软推出了 Custom Vision Service(自定义影像服务),包含在 Cognitive Services(认知服务)中,目前还处于 PREVIEW 阶段。虽然叫做 Custom Vision,但是目前只提供了图像自定义,或者叫做图像分类功能,在正式发布使用后应该会扩充影像定义的其他领域。

 

服务体验

基本概念

Custom Vision – Visual Intelligence Made Easy

这是 Custom Vision 的 Slogan,让视觉智能变得简单。而为什么叫做自定义呢,看看官网的一张使用流程图:

  • Upload Images – 上传图片并做标记
  • Train – 使用标记图片训练模型
  • Evaluate – 对训练后的模型进行训练

使用过程

Custom Vision 的管理单位是项目,登录微软账号后,点击 “New Project” 我们就可以开始创建新的项目了:

输入项目名字和描述,选择一个域,就成功创建出一个项目了。这里我们重点看一下目前提供的域:General、Food、Landmarks、Retail、Adault、General (compact)、Landmarks (compact)、Retail (compact)。其中标注为 compact 的三个域,训练后的模型都是可以导出的。可以看出,因为还在预览阶段,所以提供的域还很少,对于开发者来说,如果可以确定为某个域的识别,就选择那个域,如果不能确定,就选定为 General。

项目创建成功后,我们来看一下项目主页面:

  • Training Images – 上传你的训练图片数据集,上传后给每张图片做标记;在 Workspace 中对图片和标记进行管理;
  • Performance – 针对训练数据的表现,可以看到每个分类训练后的表现数值,来调整自己的表现阈值;
  • Predictions – 针对训练后的模型,评估和预测对测试图片的分类准确度表现;
  • Train – 准备好训练图片数据集后,点击 Train 按钮开始训练任务;
  • Quick Test – 训练完成后,可以用测试图片在线进行简单快速的测试;

接下来我们结合实际应用场景,实际体验一下使用过程。我们针对 5 个分类的手绘草稿进行分类识别,每个分类 10 张图片,分类分别是:airplane,alarmclock,ambulance,ant,arm:

需要注意的是,Custom Vision 对分类的数量和每个分类的图片量都有要求,至少两个分类,每个分类至少五张图片;

另外,因为 Custom Vision 还是预览版,所以对图片和项目的上限也有限制,每个项目只能上传 1000 张图片,50 个分类,20 次迭代。另外创建项目总数限制为 20 个项目,预测的 key 上限是每天 1000 个。如果使用 Azure 账号登录,数量限制会被取消,对应的是一个收费策略,针对 Azure 国际版用户:

 

现在开始通过我们的 50 张图片的数据集来训练模型:

可以看到,因为我们上传图片的量级很小,而且数据特征不是很稳定,所以每个分类训练的准确度都不太稳定,召回率也是一样。 

数据模型训练完成后,我们先用最简单的方式 “Quick Test” 来测试一下分类准确度:

首先用一张在分类内的图片 airplane 来测试,可以看到,识别为 airplane 的几率明显大于其他几个分类。

再用一张不在分类内的 fish 来测试,因为 fish 不在我们的 5 个分类里,而且这张手绘草稿中的特征和分类里的也不相近,所以识别结果比较平均,且都比较低,这个结果在预期内。

API 结果验证

除了 “Quick Test” 的简单在线测试方式,还支持 API Prediction 方式,对于批量自动化测试更适合。在 Prediction Tab,可以看到这个项目对应的 API 地址和 Key 信息:

 

为了验证简洁,我们使用 Postman 按照上面指引的方式来设置参数和输入图片:

我们使用本地文件进行测试,设置 Headers 和 binary 类型的 Body 后,得到以下结果:

这里的 airplane 文件其实就是上面 Quick Test 的第一张图片,所以可以看出,检测结果也是一样的,这也验证了两种验证方式的结果。

模型导出

上面我们说过,带有 compact 字样的模型是可以导出的,目前 Custom Vision 平台支持的导出方式有两种:

  • iOS 11 (Core ML) – .mkmodel 文件格式
  • Android (Tensorflow)  – .pb 文件格式

看到这里,不禁想吐槽一把,大家还记得前面介绍过的 Windows AI Platform 吗,它支持的 onnx 模型文件格式,在 Custom Vision 中并不支持,这还是一家人吗?

版权声明:本文为shaomeng原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/shaomeng/p/8625572.html