前言

    在前面我们大致介绍了什么是意图识别,把这个问题抽象出来其实是一个分类问题。在结构上面,我们使用LSTM来提取特征,Softmax来进行最后的多分类。由于语料的限制,我们目前仅考虑电台,音乐,问答类等三类的意图识别。更多种类的意图识别, 其实也是把更多种类的语料加入进来,修改softmax的分类数。最后的目标是在这三类的分类准备率能够达到90%。

    我们将考虑使用 keras(严格意义上只能说是一个接口)来实现这个意图识别的工作。

整体流程

 图一 意图分类训练流程

       我们整体的流程如图所示,首先是利用对语料语料进行预处理,包括去除语料的标点符号,去除停用词等等。将语料初始化以后便是利用word2vec生成词向量, 生成词向量以后便是利用LSTM来进行特征提取,最后便是利用softmax来完成我们的意图分类工作。整体流程非常的清晰。

数据说明

        我们的数据有三个文件,一个是question.txt, 一个是music.txt, 一个是station.txt。我们展示一下数据的格式,大家按照如下结构组织训练即可,至于更多分类是一样的。

music.txt

我想听千千阙歌
汪峰的歌曲

question.txt

天为甚么这么蓝
中国有多大

station.txt

我要听郭德纲的相声
交通广播电台

语料预处理

       在语料预处理这块,我们的工作目前做的很粗糙,仅仅是将语料按照1:1:1的比例提取出来进行训练,这里有个问题大家可以思考一下,为什么我们在训练的时候要尽量使不同类别的数据按照1:1:1的比例来进行训练.

生成词向量

       生成词向量的过程,是将语料从文字转化为数值,方便程序后续处理的过程。我们直接使用word2vec来进行训练的,至于word2Vec的原理,我们不在这里展开。在训练的时候,我们把所有一万五千条数据全部加入进行训练。

# -*- coding: UTF-8 -*-
import os
import numpy as np
from gensim.models.word2vec import Word2Vec
from gensim.corpora.dictionary import Dictionary

class Embedding(object):
    def __init__(self, dirname):
        self.dirname = dirname

    def __iter__(self):
        for fname in os.listdir(self.dirname):
            for line in open(os.path.join(self.dirname, fname)):
                yield line.split()

 if __name__ == '__main__':
    // 训练word2vec模型
    sentences = Embedding('../data/') # a memory-friendly iterator

代码的架构如下

 图二:多层LSTM提取特征,外接softmax 三分类

  1 # -*- coding: utf-8 -*-
  2 
  3 import yaml
  4 import sys
  5 reload(sys)
  6 sys.setdefaultencoding("utf-8")
  7 from sklearn.cross_validation import train_test_split
  8 import multiprocessing
  9 import numpy as np
 10 from keras.utils import np_utils
 11 from gensim.models.word2vec import Word2Vec
 12 from gensim.corpora.dictionary import Dictionary
 13 
 14 from keras.preprocessing import sequence
 15 from keras.models import Sequential
 16 from keras.layers.embeddings import Embedding
 17 from keras.layers.recurrent import LSTM
 18 from keras.layers.core import Dense, Dropout,Activation
 19 from keras.models import model_from_yaml
 20 from sklearn.preprocessing import LabelEncoder
 21 np.random.seed(1337)  # For Reproducibility
 22 import jieba
 23 import pandas as pd
 24 sys.setrecursionlimit(1000000)
 25 # set parameters:
 26 vocab_dim = 100
 27 maxlen = 100
 28 n_iterations = 1  # ideally more..
 29 n_exposures = 10
 30 window_size = 7
 31 batch_size = 32
 32 n_epoch = 15
 33 input_length = 100
 34 cpu_count = multiprocessing.cpu_count()
 35 #加载训练文件
 36 
 37 def loadfile():
 38     fopen = open('data/question_query.txt', 'r')
 39     questtion = []
 40     for line in fopen:
 41         question.append(line)
 42 
 43     fopen = open('data/music_query.txt', 'r')
 44     music = []
 45     for line in fopen:
 46         music.append(line)
 47 
 48     fopen = open('data/station_query.txt', 'r')
 49     station = []
 50     for line in fopen:
 51         station.append(line)
 52 
 53     combined = np.concatenate((station, music, qabot))
 54     question_array = np.array([-1]*len(question),dtype=int)
 55     station_array = np.array([0]*len(station),dtype=int)
 56     music_array = np.array([1]*len(music),dtype=int)
 57     #y = np.concatenate((np.ones(len(station), dtype=int), np.zeros(len(music), dtype=int)),qabot_array[0])
 58     y = np.hstack((qabot_array, station_array,music_array))
 59     print "y is:"
 60     print y.size
 61     print "combines is:"
 62     print combined.size
 63     return combined, y
 64 
 66 #对句子分词,并去掉换行符
 67 def tokenizer(document):
 68     ''' Simple Parser converting each document to lower-case, then
 69         removing the breaks for new lines and finally splitting on the
 70         whitespace
 71     '''
 72     #text = [jieba.lcut(document.replace('\n', '')) for str(document) in text_list]
 73     result_list = []
 74     for text in document:
 75         result_list.append(' '.join(jieba.cut(text)).encode('utf-8').strip())
 76     return result_list
 77 
 80 #创建词语字典,并返回每个词语的索引,词向量,以及每个句子所对应的词语索引
 81 def create_dictionaries(model=None,
 82                         combined=None):
 83     ''' Function does are number of Jobs:
 84         1- Creates a word to index mapping
 85         2- Creates a word to vector mapping
 86         3- Transforms the Training and Testing Dictionaries
 87         4- 返回所有词语的向量的拼接结果
 88     '''
 89     if (combined is not None) and (model is not None):
 90         gensim_dict = Dictionary()
 91         gensim_dict.doc2bow(model.wv.vocab.keys(),
 92                             allow_update=True)
 93         w2indx = {v: k+1 for k, v in gensim_dict.items()}#所有频数超过10的词语的索引
 94         w2vec = {word: model[word] for word in w2indx.keys()}#所有频数超过10的词语的词向量
 95   
 96         def parse_dataset(combined):
 97             ''' Words become integers
 98             '''
 99             data=[]
100             for sentence in combined:
101                 new_txt = []
102                 sentences = sentence.split(' ')
103                 for word in sentences:
104             try:
105                 word = unicode(word, errors='ignore')
106                         new_txt.append(w2indx[word])
107                     except:
108                         new_txt.append(0)
109                 data.append(new_txt)
110             return data
111         combined=parse_dataset(combined)
112         combined= sequence.pad_sequences(combined, maxlen=maxlen)#每个句子所含词语对应的索引,所以句子中含有频数小于10的词语,索引为0
113         return w2indx, w2vec,combined
114     else:
115         print 'No data provided...'
116 
118 #创建词语字典,并返回每个词语的索引,词向量,以及每个句子所对应的词语索引
119 def word2vec_train(combined):
120     # 加载word2vec 模型
121     model = Word2Vec.load('lstm_data/model/Word2vec_model.pkl')
122     index_dict, word_vectors,combined = create_dictionaries(model=model,combined=combined)
123     return   index_dict, word_vectors,combined
124 
125 def get_data(index_dict,word_vectors,combined,y):
126     # 获取句子的向量
127     n_symbols = len(index_dict) + 1                       # 所有单词的索引数,频数小于10的词语索引为0,所以加1
128     embedding_weights = np.zeros((n_symbols, vocab_dim))  #索引为0的词语,词向量全为0
129     for word, index in index_dict.items():                #从索引为1的词语开始,对每个词语对应其词向量
130         embedding_weights[index, :] = word_vectors[word]
131     x_train, x_test, y_train, y_test = train_test_split(combined, y, test_size=0.2)
132     # encode class values as integers
133     encoder = LabelEncoder()
134     encoded_y_train = encoder.fit_transform(y_train)
135     encoded_y_test = encoder.fit_transform(y_test)
136     # convert integers to dummy variables (one hot encoding)
137     y_train = np_utils.to_categorical(encoded_y_train)
138     y_test = np_utils.to_categorical(encoded_y_test)
139     print x_train.shape,y_train.shape
140     return n_symbols,embedding_weights,x_train,y_train,x_test,y_test
141 
142 ##定义网络结构
143 def train_lstm(n_symbols,embedding_weights,x_train,y_train,x_test,y_test):
144     nb_classes = 3
145     print 'Defining a Simple Keras Model...'
146     ## 定义基本的网络结构
147     model = Sequential()  # or Graph or whatever
148     ## 对于LSTM 变长的文本使用Embedding 将其变成指定长度的向量
149     model.add(Embedding(output_dim=vocab_dim,
150                         input_dim=n_symbols,
151                         mask_zero=True,
152                         weights=[embedding_weights],
153                         input_length=input_length))  # Adding Input Length
154     ## 使用单层LSTM 输出的向量维度是50,输入的向量维度是vocab_dim,激活函数relu
155     model.add(LSTM(output_dim=50, activation='relu', inner_activation='hard_sigmoid'))
156     model.add(Dropout(0.5))
157     ## 在这里外接softmax,进行最后的3分类
158     model.add(Dense(output_dim=nb_classes, input_dim=50, activation='softmax'))
159     print 'Compiling the Model...'
160     ## 激活函数使用的是adam
161     model.compile(loss='categorical_crossentropy',
162                   optimizer='adam',metrics=['accuracy'])
163 
164     print "Train..."
165     print y_train
166     model.fit(x_train, y_train, batch_size=batch_size, nb_epoch=n_epoch,verbose=1, validation_data=(x_test, y_test))
167     print "Evaluate..."
168     score = model.evaluate(x_test, y_test,
169                                 batch_size=batch_size)
170     yaml_string = model.to_yaml()
171     with open('lstm_data/lstm_koubei.yml', 'w') as outfile:
172         outfile.write( yaml.dump(yaml_string, default_flow_style=True) )
173     model.save_weights('lstm_data/lstm_koubei.h5')
174     print 'Test score:', score
175 
176 #训练模型,并保存
177 def train():
178     print 'Loading Data...'
179     combined,y=loadfile()
180     print len(combined),len(y)
181     print 'Tokenising...'
182     combined = tokenizer(combined)
183     print 'Training a Word2vec model...'
184     index_dict, word_vectors,combined=word2vec_train(combined)
185     print 'Setting up Arrays for Keras Embedding Layer...'
186     n_symbols,embedding_weights,x_train,y_train,x_test,y_test=get_data(index_dict, word_vectors,combined,y)
187     print x_train.shape,y_train.shape
188     train_lstm(n_symbols,embedding_weights,x_train,y_train,x_test,y_test)
190 
191 #训练模型,并保存
192 def self_train():
193     print 'Loading Data...'
194     combined,y=loadfile()
195     print len(combined),len(y)
196     print 'Tokenising...'
197     combined = tokenizer(combined)
198     print 'Training a Word2vec model...'
199     index_dict, word_vectors,combined=word2vec_train(combined)
200     print 'Setting up Arrays for Keras Embedding Layer...'
201     n_symbols,embedding_weights,x_train,y_train,x_test,y_test=get_data(index_dict, word_vectors,combined,y)
202     print x_train.shape,y_train.shape
203     train_lstm(n_symbols,embedding_weights,x_train,y_train,x_test,y_test)
204 
205 def input_transform(string):
206     words=' '.join(jieba.cut(string)).encode('utf-8').strip()
207     tmp_list = []
208     tmp_list.append(words)
209     #words=np.array(tmp_list).reshape(1,-1)
210     model=Word2Vec.load('lstm_data/model/Word2vec_model.pkl')
211     _,_,combined=create_dictionaries(model,tmp_list)
212     return combined248 
249 if __name__=='__main__': 250 self_train()

修改网络结构 

    我们使用LSTM单层网络结构,在迭代15 次以后训练准确率已经可以达到96%以上。进一步思考一下,叠加LSTM网络,是否可以达到更高的训练准确率,其他的部分不变,我们仅仅修改我们的网络定义部分

 1 ##定义网络结构
 2 def train_lstm(n_symbols,embedding_weights,x_train,y_train,x_test,y_test):
 3     nb_classes = 3
 4     print 'Defining a Simple Keras Model...'
 5     model = Sequential()  # or Graph or whatever
 6     model.add(Embedding(output_dim=vocab_dim,
 7                         input_dim=n_symbols,
 8                         mask_zero=True,
 9                         weights=[embedding_weights],
10                         input_length=input_length))  # Adding Input Length
11     print vocab_dim
12     print n_symbols
13     #model.add(LSTM(output_dim=50, activation='relu',inner_activation='hard_sigmoid'))
14     #model.add(LSTM(output_dim=25, activation='relu', return_sequences=True))
15     model.add(LSTM(64, input_dim=vocab_dim, activation='relu', return_sequences=True))
16     model.add(LSTM(32, return_sequences=True))
17     model.add(Dropout(0.5))
18     #model.add(Dense(nb_classes))
19     #model.add(Activation('softmax'))
20     print model.summary()
21     model.add(NonMasking())
22     model.add(Flatten())
23     model.add(Dense(output_dim=nb_classes, activation='softmax'))
24     print 'Compiling the Model...'
25     model.compile(loss='categorical_crossentropy',
26                   optimizer='adam',metrics=['accuracy'])
27 
28     print "Train..."
29     print y_train
30     model.fit(x_train, y_train, batch_size=batch_size, nb_epoch=n_epoch,verbose=1, validation_data=(x_test, y_test))
31     print "Evaluate..."
32     score = model.evaluate(x_test, y_test,
33                                 batch_size=batch_size)
34 
35     yaml_string = model.to_yaml()
36     with open('lstm_data/lstm_koubei.yml', 'w') as outfile:
37         outfile.write( yaml.dump(yaml_string, default_flow_style=True) )
38     model.save_weights('lstm_data/lstm_koubei.h5')
39     print 'Test score:', score

  我们发现同样迭代15次,训练准确率可以达到97%左右。说明叠加LSTM网络结构确实是有效的,能够更好的抓取训练语料的特征。

训练反思与总结 

     目前,我们仅仅可以说做了一个意图识别的demo,已经可以达到比较高的训练准确率,但是我们还有很多方面改进。第一也是最直观的是我们目前的训练语料还很少,并且训练的类别也比较少,我们希望在保持训练准确率的前提下,训练的语料可以更多,训练的类别更多。第二对语料的预处理做的非常的粗糙,没有去除停用词,没有去除标点符号等等,我们这里没有做的原因是我们的训练语料是比较干净所以就没有进行处理了。第三个是我们目前分词的算法是非常的粗糙,使用的结巴分词默认的词库进行分词。分词的词库没有匹配我们领域知识。第四我们还希望使用CNN来对比一下抽取的效果。

     但是大家可以看到深度学习在自然语言处理当中巨大的威力,我们不用辛辛苦苦的去提取unigram,bigram等等特征,使用embeding的方法来描述文本,节省了大量人工,并且训练的准确率远超过我们的预期。

版权声明:本文为ModifyRong原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/ModifyRong/p/8546421.html