环境

Python3,

gensim,jieba,numpy ,pandas

原理:文章转成向量,然后在计算两个向量的余弦值。


Gensim

gensim是一个python的自然语言处理库,能够将文档根据TF-IDF, LDA, LSI 等模型转化成向量模式,gensim还实现了word2vec功能,以便进行进一步的处理。

具体API看官网:https://radimrehurek.com/gensim


  1. 中文分词
    中文需要分词,英文就不需要了,分词用的 jieba 。
    def segment(doc: str):
    “””中文分词

       Arguments:
           doc {str} -- 输入文本
       Returns:
           [type] -- [description]
       """
       # 停用词
       stop_words = pd.read_csv("./data/stopwords_TUH.txt", index_col=False, quoting=3,
                                names=['stopword'],
                                sep="\n",
                                encoding='utf-8')
       stop_words = list(stop_words.stopword)
    # 去掉html标签数字等
       reg_html = re.compile(r'<[^>]+>', re.S)
       doc = reg_html.sub('', doc)
       doc = re.sub('[0-9]', '', doc)
       doc = re.sub('\s', '', doc)
       word_list = list(jieba.cut(doc))
       out_str = ''
       for word in word_list:
           if word not in stop_words:
               out_str += word
               out_str += ' '
       segments = out_str.split(sep=" ")
    
       return segments
  2. 训练 Doc2Vec 模型
    模型参数下面说明,先上代码
    def train():
    “””训练 Doc2Vec 模型
    “””

       # 先把所有文档的路径存进一个 array中,docLabels:
       data_dir = "./data/corpus_words"
       docLabels = [f for f in listdir(data_dir) if f.endswith('.txt')]
    
       data = []
       for doc in docLabels:
           ws = open(data_dir + "/" + doc, 'r', encoding='UTF-8').read()
           data.append(ws)
    
       print(len(data))
       # 训练 Doc2Vec,并保存模型:
       sentences = LabeledLineSentence(data, docLabels)
       # 实例化一个模型
       model = gensim.models.Doc2Vec(vector_size=256, window=10, min_count=5,
                                     workers=4, alpha=0.025, min_alpha=0.025, epochs=12)
       model.build_vocab(sentences)
       print("开始训练...")
       # 训练模型
       model.train(sentences, total_examples=model.corpus_count, epochs=12)
    
       model.save("./models/doc2vec.model")
       print("model saved")

    保存成功后会有三个文件,分别是:doc2vec.model,doc2vec.model.trainables.syn1neg.npy,doc2vec.model.wv.vectors.npy
    Doc2Vec参数说明:
    · vector_size:是指特征向量的维度,默认为100。大的size需要更多的训练数据,但是效果会更好.
    · window:表示当前词与预测词在一个句子中的最大距离是多少
    · alpha: 是学习速率
    · min_count: 可以对字典做截断. 词频少于min_count次数的单词会被丢弃掉, 默认值为5
    · workers参数控制训练的并行数。
    · epochs: 迭代次数,默认为5

  3. 文本转换成向量
    利用之前保存的模型,把分词后的分本转成向量,代码如下
    def sent2vec(model, words):
    “””文本转换成向量

       Arguments:
           model {[type]} -- Doc2Vec 模型
           words {[type]} -- 分词后的文本
    
       Returns:
           [type] -- 向量数组
       """
    
       vect_list = []
       for w in words:
           try:
               vect_list.append(model.wv[w])
           except:
               continue
       vect_list = np.array(vect_list)
       vect = vect_list.sum(axis=0)
       return vect / np.sqrt((vect ** 2).sum())
  4. 计算两个向量余弦值
    余弦相似度,又称为余弦相似性,是通过计算两个向量的夹角余弦值来评估他们的相似度。余弦相似度将向量根据坐标值,绘制到向量空间中,如最常见的二维空间。
    余弦值的范围在[-1,1]之间,值越趋近于1,代表两个向量的方向越接近;越趋近于-1,他们的方向越相反;接近于0,表示两个向量近乎于正交。
    最常见的应用就是计算文本相似度。将两个文本根据他们词,建立两个向量,计算这两个向量的余弦值,就可以知道两个文本在统计学方法中他们的相似度情况。实践证明,这是一个非常有效的方法。

公式:
def similarity(a_vect, b_vect):
“””计算两个向量余弦值

       Arguments:
           a_vect {[type]} -- a 向量
           b_vect {[type]} -- b 向量
       
       Returns:
           [type] -- [description]
       """
   
       dot_val = 0.0
       a_norm = 0.0
       b_norm = 0.0
       cos = None
       for a, b in zip(a_vect, b_vect):
           dot_val += a*b
           a_norm += a**2
           b_norm += b**2
       if a_norm == 0.0 or b_norm == 0.0:
           cos = -1
       else:
           cos = dot_val / ((a_norm*b_norm)**0.5)
   
       return cos
  1. 预测
    def test_model():
    print(“load model”)
    model = gensim.models.Doc2Vec.load(‘./models/doc2vec.model’)

       st1 = open('./data/courpus_test/t1.txt', 'r', encoding='UTF-8').read()
       st2 = open('./data/courpus_test/t2.txt', 'r', encoding='UTF-8').read()
       # 分词
       print("segment")
       st1 = segment(st1)
       st2 = segment(st2)
       # 转成句子向量
       vect1 = sent2vec(model, st1)
       vect2 = sent2vec(model, st2)
    
       # 查看变量占用空间大小
       import sys
       print(sys.getsizeof(vect1))
       print(sys.getsizeof(vect2))
    
       cos = similarity(vect1, vect2)
       print("相似度:{:.4f}".format(cos))

    看下效果:

完全相同的文章

不相同的文章

数据太大,没有上传,自己网上找找应该有很多。

完整代码:https://github.com/jarvisqi/nlp_learning/blob/master/gensim/doc2vector.py

参考:

版权声明:本文为JreeyQi原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/JreeyQi/p/9042397.html