graph RL
subgraph 0
a1[度量学习] –> |也称为马氏度量学习问题|b1[线性变换]
a1[度量学习] –> b2[非线性变换]
end
subgraph 1
b1 –> c1[监督学习]
c1 –> |该类型的算法充分利用数据的标签信息|d1[全局]
c1 –> |该类型的算法同时考虑数据的标签信息和数据点之间的几何关系|d2[局部]
end
subgraph 2
b1 –> c2[非监督学习]
end
subgraph 3
d1 –> f1[ITML]
d1 –> f2[MMC]
d1 –> f3[MCML]
end
subgraph 4
d2 –> g1[NCA]
d2 –> g2[LMNN]
d2 –> g3[RCA]
d2 –> g4[Local LDA]
end
subgraph 5
c2 –> e1[PCA]
c2 –> e2[MDS]
c2 –> e3[NMF]
c2 –> e4[ICA]
c2 –> e5[NPE]
c2 –> e6[LPP]
end
subgraph 6
b2 –> b3[非线性降维]
b2 –> b4[核方法]
end
subgraph 7
b3 –> h1[ISOMAP]
b3 –> h2[LLE]
b3 –> h3[LE]
end
subgraph 8
b4 –> t1[Non-Mahalanobis Local Distance Functions]
b4 –> t2[Mahalanobis Local Distance Functions]
b4 –> t3[Metric Learning with Neural Networks]
end
  • ITML: Information-theoretic metric learning
  • MMC: Mahalanobis Metric Learning for Clustering
  • MCML: Maximally Collapsing Metric Learning
  • NCA: Neighbourhood Components Analysis
  • LMNN: Large-Margin Nearest Neighbors
  • RCA: Relevant Component Analysis
  • Local LDA: Local Linear Discriminative Analysis
  • PCA: Pricipal Components Analysis(主成分分析)
  • MDS: Multi-dimensional Scaling(多维尺度变换)
  • NMF: Non-negative Matrix Factorization(非负矩阵分解)
  • ICA: Independent components analysis(独立成分分析)
  • NPE: Neighborhood Preserving Embedding(邻域保持嵌入)
  • LPP: Locality Preserving Projections(局部保留投影)
  • ISOMAP: Isometric Mapping(等距映射)
  • LLE: Locally Linear Embedding(局部线性嵌入)
  • LE: Laplacian Eigenmap(拉普拉斯特征映射)

版权声明:本文为q735613050原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/q735613050/p/9369023.html