第21章       RL-TCPnet之高效的事件触发框架

本章节为大家讲解高效的事件触发框架实现方法,BSD Socket编程和后面章节要讲解到的FTP、TFTP和HTTP等都非常适合使用这种方式。实际项目中也推荐大家采用这种方式,不过仅适用于RTOS环境,比如RTX、FreeRTOS或者uCOS-III均可,裸机方式不支持。

另外,前面章节讲解的TCP和UDP的原始socket使用这种方式不太方便,因为应用程序的编写会变的稍麻烦,不像BSD Socket那么省事。

21.1  初学者重要提示

21.2  高效的事件触发框架说明

21.3  RTX系统实例修改方法

21.4  uCOS-III系统实例修改方法

21.5  FreeRTOS系统实例修改方法

21.6  实验操作和实验例程说明

21.7  总结

 

 

21.1  初学者重要提示

  • 实际项目中强烈推荐大家采用这种方式,不过仅适用于RTOS环境,比如RTX、FreeRTOS或者uCOS-III均可。后面章节配套的例子,基本也都采用这种方式。
  • 前面章节讲解的TCP和UDP的原始socket使用这种方式不太方便,因为应用程序的编写会变的稍麻烦,不像BSD Socket这么省事。

 

21.2  高效的事件触发框架说明

讲解高效的事件触发框架之前,先看下没有使用事件触发方式时,ping的响应速度,以例程:V6-1024_RL-TCPnet实验_BSD Socket服务器之TCP(RTX)为例进行说明:

 

下面是使用了事件触发方式时,ping的响应速度,以例程:V6-1030_RL-TCPnet实验_高效的事件触发框架(RTX)为例进行说明:

 

从上面的两个响应速度的对比中,可以看出,使用了时间触发方式的例子,响应速度都在1ms以下,效果还是非常明显的。

前面章节配套的例子里面,响应速度慢,是因为我们都是周期性的调用RL-TCPnet的主处理函数main_TcpNet(),比如前面BSD Socket服务器章节配套的例子中:

/*

*********************************************************************************************************

*    函 数 名: AppTaskTCPMain

*    功能说明: RL-TCPnet网络主任务

*    形    参: 无

*    返 回 值: 无

*   优 先 级: 5 

*********************************************************************************************************

*/

__task void AppTaskTCPMain(void)

{

     while (1)

     {

         /* RL-TCPnet处理函数 */

         main_TcpNet();

         os_dly_wait(2);

     }

}

 

这种方式有如下两个缺点:

  1. 没有网络通信时也要周期性的执行。
  2. 实时响应差,因为在延迟的这段时间内有网络数据包的话,数据包得不到及时的处理。

另外特别注意一点,一些不理解的读者会问,我们的底层函数里面不是有以太网中断吗,为什么还会不能实时性响应呢?根本的原因就在,虽然有以太网中断,但是中断后,RL-TCPent的主处理函数main_TcpNet()不能得到及时的执行,所以我们要解决的就是让主处理函数得到实时执行。

用户通过修改以下几个地方就可以实现:

  • 修改ETH_STM32F4xx.c文件中的函数send_frame。
  • 修改ETH_STM32F4xx.c文件中的以太网中断函数。
  • 修改RL-TCPnet的时间基准更新任务。
  • 修改RL-TCPnet的网络主任务,函数main_TcpNet的调用不再采用轮询方式,改成事件标志等待方式。

下面针对RTX、uCOS-III和FreeRTOS操作系统分别做讲解:

 

21.3  RTX系统实例修改方法

下面针对RTX系统要做的具体修改做个说明,我们以例程:V6-1024_RL-TCPnet实验_BSD Socket服务器之TCP(RTX)为例。通过修改函数send_frame,以太网中断和时间基准更新任务都给网络主任务发事件标志,让其得到实时执行,从而实现高效的事件触发框架。

21.3.1 修改函数send_frame

修改ETH_STM32F4xx.c文件中的函数send_frame,此函数的末尾添加事件标志函数os_evt_set(0x0001, HandleTaskTCPMain);

/*

*********************************************************************************************************

*    函 数 名: send_frame

*    功能说明: 传递数据帧给MAC DMA发送描述符,并使能发送。

*    形    参: 无

*    返 回 值: 无

*********************************************************************************************************

*/

extern OS_TID HandleTaskTCPMain;

void send_frame (OS_FRAME *frame)

{

     U32 *sp,*dp;

     U32 i,j;

 

     j = TxBufIndex;

    

     /* 等待上一帧数据发送完成 */

     while (Tx_Desc[j].CtrlStat & DMA_TX_OWN);

 

     sp = (U32 *)&frame->data[0];

     dp = (U32 *)(Tx_Desc[j].Addr & ~3);

 

     /* 复制要发送的数据到DMA发送描述符中 */

     for (i = (frame->length + 3) >> 2; i; i--)

     {

         *dp++ = *sp++;

     }

    

     /* 设置数据帧大小 */

     Tx_Desc[j].Size      = frame->length;

    

     /* 发送描述符由DMA控制发送 */

     Tx_Desc[j].CtrlStat |= DMA_TX_OWN;

    

     if (++j == NUM_TX_BUF) j = 0;

     TxBufIndex = j;

    

     /* 开始帧传输 */

     /*

        DMASR 以太网 DMA 状态寄存器

        向ETH_DMASR寄存器[16:0]中的(未保留)位写入1会将其清零,写入 0 则不起作用。

        位1 TPSS:发送过程停止状态 (Transmit process stopped status)

                 当发送停止时,此位置 1。

     */

     ETH->DMASR   = DSR_TPSS;

    

     /*

        DMATPDR 以太网DMA发送轮询请求寄存器

       应用程序使用此寄存器来指示DMA轮询发送描述符列表。

       位 31:0 TPD:发送轮询请求(Transmit poll demand)

                    向这些位写入任何值时,DMA都会读取ETH_DMACHTDR寄存器指向的当前描述符。如果

                    该描述符不可用(由CPU所有),则发送会返回到挂起状态,并将ETH_DMASR寄存器位2

                    进行置位。如果该描述符可用,则发送会继续进行。      

     */

     ETH->DMATPDR = 0;

    

     os_evt_set(0x0001, HandleTaskTCPMain);

}

 

21.3.2 修改以太网中断函数

修改ETH_STM32F4xx.c文件中的以太网中断函数,此函数的末尾添加事件标志函数:isr_evt_set(0x0001, HandleTaskTCPMain);

/*

*********************************************************************************************************

*    函 数 名: ETH_IRQHandler

*    功能说明: 以太网中断,主要处理从MAC DMA接收描述符接收到的数据帧以及错误标志的处理。

*    形    参: 无

*    返 回 值: 无

*********************************************************************************************************

*/

void ETH_IRQHandler (void)

{

     OS_FRAME *frame;

     U32 i, RxLen;

     U32 *sp,*dp;

 

     i = RxBufIndex;

    

     /* 循环所有接受描述符列表,遇到未接收到数据的退出循环 */

     do

     {

         /*

              #define DMA_RX_ERROR_MASK   (DMA_RX_ES | DMA_RX_LE | DMA_RX_RWT | \

                                              DMA_RX_RE | DMA_RX_CE)

             

              有错误,放弃此帧数据,错误类型包含如下:

              位15 DMA_RX_ES:错误汇总(Error summary),即CRC错误,接收错误,看门狗超时,延迟冲突等。

             位12 DMA_RX_LE:长度错误(Length error)

                             该位置1时,指示接收帧的实际长度与长度/类型字段的值不符。该字段仅在帧类

                             型位(RDES0[5])复位后有效。

              位4 DMA_RX_RWT:接收看门狗超时 (Receive watchdog timeout)

                             该位置1时,表示接收看门狗计时器在接收当前帧时超时,且当前帧在看门狗超

                             时后被截断了

              位3 DMA_RX_RE: 接收错误 (Receive error)

                            该位置1时,表示在帧接收期间,当发出RX_DV信号时,会发出RX_ERR信号。

              位1 DMA_RX_CE: CRC 错误(CRC error)

                            该位置1时,表示接收的帧发生循环冗余校验(CRC)错误。只有最后一个描述符

                             (RDES0[8])置1时,该字段才有效

         */

         if (Rx_Desc[i].Stat & DMA_RX_ERROR_MASK)

         {

              goto rel;

         }

        

          /*

              #define DMA_RX_SEG_MASK   (DMA_RX_FS | DMA_RX_LS)

             位9 FS:第一个描述符 (First descriptor)

                    该位置1时,指示此描述符包含帧的第一个缓冲区。如果第一个缓冲区的大小为0,则第二

                    个缓冲区将包含帧的帧头。如果第二个缓冲区的大小为0,则下一个描述符将包含帧的帧头。

        

             位8 LS:最后一个描述符 (Last descriptor)

                    该位置1时,指示此描述符指向的缓冲区为帧的最后一个缓冲区。

        

             下面的函数用于判断此帧数据是否只有一个缓冲,初始化接收描述符列表的时候,每个描述符仅设置了

             一个缓冲。

         */

         if ((Rx_Desc[i].Stat & DMA_RX_SEG_MASK) != DMA_RX_SEG_MASK)

         {

              goto rel;

         }

        

         RxLen = ((Rx_Desc[i].Stat >> 16) & 0x3FFF) - 4;

         if (RxLen > ETH_MTU)

         {

              /* 数据包太大,直接放弃 */

              goto rel;

         }

        

          /* 申请动态内存,RxLen或上0x80000000表示动态内存不足了不会调用函数sys_error() */

         frame = alloc_mem (RxLen | 0x80000000);

        

          /* 如果动态内存申请失败了,放弃此帧数据;成功了,通过函数put_in_queue存入队列中 */

         if (frame != NULL)

         {

              sp = (U32 *)(Rx_Desc[i].Addr & ~3);

              dp = (U32 *)&frame->data[0];

              for (RxLen = (RxLen + 3) >> 2; RxLen; RxLen--)

              {

                   *dp++ = *sp++;

              }

              put_in_queue (frame);

         }

        

          /* 设置此接收描述符继续接收新的数据 */

         rel: Rx_Desc[i].Stat = DMA_RX_OWN;

 

         if (++i == NUM_RX_BUF) i = 0;

     }

     while (!(Rx_Desc[i].Stat & DMA_RX_OWN));

    

     RxBufIndex = i;

 

     /*

        DMASR DMA的状态寄存器(DMA status register)

        位7 RBUS:接收缓冲区不可用状态 (Receive buffer unavailable status)

                 此位指示接收列表中的下一个描述符由CPU所拥有,DMA无法获取。接收过程进入挂起状态。

                  要恢复处理接收描述符,CPU应更改描述符的拥有关系,然后发出接收轮询请求命令。如果

                  未发出接收轮询请求命令,则当接收到下一个识别的传入帧时,接收过程会恢复。仅当上一

                  接收描述符由DMA所拥有时,才能将ETH_DMASR[7]置1。

    

        DMAIER的接收缓冲区不可用中断RBUIE是bit7,对于的接收缓冲区不可用状态在DMA状态寄存器中也是bit7。

     */

     if (ETH->DMASR & INT_RBUIE)

     {

         /* 接收缓冲区不可用,重新恢复DMA传输 */

         ETH->DMASR = ETH_DMASR_RBUS;

         ETH->DMARPDR = 0;

     }

    

     /*

        DMASR DMA的状态寄存器(DMA status register)

        这里实现清除中断挂起标志

        位16 ETH_DMASR_NIS:所有正常中断 (Normal interrupt summary)

        位15 ETH_DMASR_AIS:所有异常中断 (Abnormal interrupt summary)

        位6  ETH_DMASR_RS :接收状态 (Receive status)

                            此位指示帧接收已完成,具体的帧状态信息已经包含在描述符中,接收仍保持运行状态。

     */

     ETH->DMASR = ETH_DMASR_NIS | ETH_DMASR_AIS | ETH_DMASR_RS;

    

     isr_evt_set(0x0001, HandleTaskTCPMain);

}

 

21.3.3 修改RL-TCPnet的时间基准更新任务

修改RL-TCPnet的时间基准更新任务,添加事件标志函数os_evt_set(0x0001, HandleTaskTCPMain);

/*

*********************************************************************************************************

*    函 数 名: AppTaskStart

*    功能说明: 启动任务,也是最高优先级任务,这里实现RL-TCPnet的时间基准更新。

*    形    参: 无

*    返 回 值: 无

*   优 先 级: 6 

*********************************************************************************************************

*/

__task void AppTaskStart(void)

{

     /* 初始化RL-TCPnet */

     init_TcpNet ();

    

     /* 创建任务 */

     AppTaskCreate();

    

     os_itv_set (100);

    

    while(1)

    {

         os_itv_wait ();

        

         /* RL-TCPnet时间基准更新函数 */

          timer_tick ();

         os_evt_set(0x0001, HandleTaskTCPMain);

    }

}

 

21.3.4 修改RL-TCPnet的网络主任务

修改RL-TCPnet的网络主任务,函数main_TcpNet的调用不再采用轮询方式,改成事件标志等待方式,即修改为如下形式:

/*

*********************************************************************************************************

*    函 数 名: AppTaskTCPMain

*    功能说明: RL-TCPnet网络主任务

*    形    参: 无

*    返 回 值: 无

*   优 先 级: 5 

*********************************************************************************************************

*/

__task void AppTaskTCPMain(void)

{

     while (1)

     {

          /* RL-TCPnet处理函数 */

         os_evt_wait_and(0x0001, 0xFFFF);

         while (main_TcpNet() == __TRUE);

     }

}

 

21.3.5 最后特别注意优先级安排

最后,用户要特别注意几个任务的优先级安排,非常重要。

  • RL-TCPnet的时间基准更新任务一定要是最高优先级任务。
  • RL-TCPnet的网络主任务,即调用函数main_TcpNet的任务是次高优先级任务。
  • 应用层的任务要比前面两个任务的优先级都低。

 

21.4 uCOS-III系统实例修改方法

下面针对uCOS-III系统要做的具体修改做个说明,我们以例程:V6-1025_RL-TCPnet实验_BSD Socket服务器之TCP(uCOS-III)为例。通过修改函数send_frame,以太网中断和时间基准更新任务都给网络主任务发事件标志,让其得到实时执行,从而实现高效的事件触发框架。

21.4.1 创建事件标志组

创建uCOS-III的事件标志组:

OS_FLAG_GRP        FLAG_TCPnet;

 

/*

*********************************************************************************************************

*    函 数 名: AppObjCreate

*    功能说明: 创建任务通讯

*    形    参: p_arg 是在创建该任务时传递的形参

*    返 回 值: 无

*********************************************************************************************************

*/

static  void  AppObjCreate (void)

{

     OS_ERR      err;

    

     /* 创建事件标志组 */

     OSFlagCreate ((OS_FLAG_GRP  *)&FLAG_TCPnet,

                  (CPU_CHAR     *)"FLAG TCPnet",

                  (OS_FLAGS      )0,

                  (OS_ERR       *)&err);

}

 

21.4.2 修改函数send_frame

修改ETH_STM32F4xx.c文件中的函数send_frame,此函数的末尾添加事件标志函数OSFlagPost(宏定义uCOS_EN在bsp.h文件里面使能,针对教程配套例子做的定义,方便管理。大家自己搞时,不必受此限制)。

/*

*********************************************************************************************************

*    函 数 名: send_frame

*    功能说明: 传递数据帧给MAC DMA发送描述符,并使能发送。

*    形    参: 无

*    返 回 值: 无

*********************************************************************************************************

*/

void send_frame (OS_FRAME *frame)

{

     U32 *sp,*dp;

     U32 i,j;

 

#if uCOS_EN == 1

     OS_ERR  err;

#endif

 

     j = TxBufIndex;

    

     /* 等待上一帧数据发送完成 */

     while (Tx_Desc[j].CtrlStat & DMA_TX_OWN);

 

     sp = (U32 *)&frame->data[0];

     dp = (U32 *)(Tx_Desc[j].Addr & ~3);

 

     /* 复制要发送的数据到DMA发送描述符中 */

     for (i = (frame->length + 3) >> 2; i; i--)

     {

         *dp++ = *sp++;

     }

    

     /* 设置数据帧大小 */

     Tx_Desc[j].Size      = frame->length;

    

     /* 发送描述符由DMA控制发送 */

     Tx_Desc[j].CtrlStat |= DMA_TX_OWN;

    

     if (++j == NUM_TX_BUF) j = 0;

     TxBufIndex = j;

    

     /* 开始帧传输 */

     /*

        DMASR 以太网 DMA 状态寄存器

        向ETH_DMASR寄存器[16:0]中的(未保留)位写入1会将其清零,写入 0 则不起作用。

        位1 TPSS:发送过程停止状态 (Transmit process stopped status)

                 当发送停止时,此位置 1。

     */

     ETH->DMASR   = DSR_TPSS;

    

     /*

        DMATPDR 以太网DMA发送轮询请求寄存器

       应用程序使用此寄存器来指示DMA轮询发送描述符列表。

       位 31:0 TPD:发送轮询请求(Transmit poll demand)

                    向这些位写入任何值时,DMA都会读取ETH_DMACHTDR寄存器指向的当前描述符。如果

                    该描述符不可用(由CPU所有),则发送会返回到挂起状态,并将ETH_DMASR寄存器位2

                    进行置位。如果该描述符可用,则发送会继续进行。      

     */

     ETH->DMATPDR = 0;

    

#if uCOS_EN == 1

     OSFlagPost ((OS_FLAG_GRP  *)&FLAG_TCPnet,

                   (OS_FLAGS      )0x0001,

                   (OS_OPT        )OS_OPT_POST_FLAG_SET,

                   (OS_ERR       *)&err);

#endif  

}

 

21.4.3 修改以太网中断函数

修改ETH_STM32F4xx.c文件中的以太网中断函数,此函数的末尾添加事件标志函数:OSFlagPost(宏定义uCOS_EN在bsp.h文件里面使能,针对教程配套例子做的定义,方便管理。大家自己搞时,不必受此限制)。

/*

*********************************************************************************************************

*    函 数 名: ETH_IRQHandler

*    功能说明: 以太网中断,主要处理从MAC DMA接收描述符接收到的数据帧以及错误标志的处理。

*    形    参: 无

*    返 回 值: 无

*********************************************************************************************************

*/

void ETH_IRQHandler (void)

{

     OS_FRAME *frame;

     U32 i, RxLen;

     U32 *sp,*dp;

 

#if uCOS_EN == 1

     OS_ERR  err;

     CPU_SR_ALLOC();

 

     CPU_CRITICAL_ENTER();

     OSIntEnter();                        

     CPU_CRITICAL_EXIT();

#endif

 

     i = RxBufIndex;

    

     /* 循环所有接受描述符列表,遇到未接收到数据的退出循环 */

     do

     {

         /*

              #define DMA_RX_ERROR_MASK   (DMA_RX_ES | DMA_RX_LE | DMA_RX_RWT | \

                                              DMA_RX_RE | DMA_RX_CE)

             

              有错误,放弃此帧数据,错误类型包含如下:

              位15 DMA_RX_ES:错误汇总(Error summary),即CRC错误,接收错误,看门狗超时,延迟冲突等。

             位12 DMA_RX_LE:长度错误(Length error)

                             该位置1时,指示接收帧的实际长度与长度/类型字段的值不符。该字段仅在帧类

                             型位(RDES0[5])复位后有效。

              位4 DMA_RX_RWT:接收看门狗超时 (Receive watchdog timeout)

                             该位置1时,表示接收看门狗计时器在接收当前帧时超时,且当前帧在看门狗超

                             时后被截断了

              位3 DMA_RX_RE: 接收错误 (Receive error)

                            该位置1时,表示在帧接收期间,当发出RX_DV信号时,会发出RX_ERR信号。

              位1 DMA_RX_CE: CRC 错误(CRC error)

                            该位置1时,表示接收的帧发生循环冗余校验(CRC)错误。只有最后一个描述符

                             (RDES0[8])置1时,该字段才有效

         */

         if (Rx_Desc[i].Stat & DMA_RX_ERROR_MASK)

         {

              goto rel;

         }

        

          /*

              #define DMA_RX_SEG_MASK   (DMA_RX_FS | DMA_RX_LS)

             位9 FS:第一个描述符 (First descriptor)

                    该位置1时,指示此描述符包含帧的第一个缓冲区。如果第一个缓冲区的大小为0,则第二

                    个缓冲区将包含帧的帧头。如果第二个缓冲区的大小为0,则下一个描述符将包含帧的帧头。

        

             位8 LS:最后一个描述符 (Last descriptor)

                    该位置1时,指示此描述符指向的缓冲区为帧的最后一个缓冲区。

        

             下面的函数用于判断此帧数据是否只有一个缓冲,初始化接收描述符列表的时候,每个描述符仅设置了

             一个缓冲。

         */

         if ((Rx_Desc[i].Stat & DMA_RX_SEG_MASK) != DMA_RX_SEG_MASK)

         {

              goto rel;

         }

        

         RxLen = ((Rx_Desc[i].Stat >> 16) & 0x3FFF) - 4;

         if (RxLen > ETH_MTU)

         {

              /* 数据包太大,直接放弃 */

              goto rel;

         }

        

          /* 申请动态内存,RxLen或上0x80000000表示动态内存不足了不会调用函数sys_error() */

         frame = alloc_mem (RxLen | 0x80000000);

        

          /* 如果动态内存申请失败了,放弃此帧数据;成功了,通过函数put_in_queue存入队列中 */

         if (frame != NULL)

         {

              sp = (U32 *)(Rx_Desc[i].Addr & ~3);

              dp = (U32 *)&frame->data[0];

              for (RxLen = (RxLen + 3) >> 2; RxLen; RxLen--)

              {

                   *dp++ = *sp++;

              }

              put_in_queue (frame);

         }

        

          /* 设置此接收描述符继续接收新的数据 */

         rel: Rx_Desc[i].Stat = DMA_RX_OWN;

 

         if (++i == NUM_RX_BUF) i = 0;

     }

     while (!(Rx_Desc[i].Stat & DMA_RX_OWN));

    

     RxBufIndex = i;

 

     /*

        DMASR DMA的状态寄存器(DMA status register)

        位7 RBUS:接收缓冲区不可用状态 (Receive buffer unavailable status)

                 此位指示接收列表中的下一个描述符由CPU所拥有,DMA无法获取。接收过程进入挂起状态。

                  要恢复处理接收描述符,CPU应更改描述符的拥有关系,然后发出接收轮询请求命令。如果

                  未发出接收轮询请求命令,则当接收到下一个识别的传入帧时,接收过程会恢复。仅当上一

                  接收描述符由DMA所拥有时,才能将ETH_DMASR[7]置1。

    

        DMAIER的接收缓冲区不可用中断RBUIE是bit7,对于的接收缓冲区不可用状态在DMA状态寄存器中也是bit7。

     */

     if (ETH->DMASR & INT_RBUIE)

     {

         /* 接收缓冲区不可用,重新恢复DMA传输 */

         ETH->DMASR = ETH_DMASR_RBUS;

         ETH->DMARPDR = 0;

     }

    

     /*

        DMASR DMA的状态寄存器(DMA status register)

        这里实现清除中断挂起标志

        位16 ETH_DMASR_NIS:所有正常中断 (Normal interrupt summary)

        位15 ETH_DMASR_AIS:所有异常中断 (Abnormal interrupt summary)

        位6  ETH_DMASR_RS :接收状态 (Receive status)

                            此位指示帧接收已完成,具体的帧状态信息已经包含在描述符中,接收仍保持运行状态。

     */

     ETH->DMASR = ETH_DMASR_NIS | ETH_DMASR_AIS | ETH_DMASR_RS;

 

#if uCOS_EN == 1

     OSFlagPost ((OS_FLAG_GRP  *)&FLAG_TCPnet,

                   (OS_FLAGS      )0x0001,

                   (OS_OPT        )OS_OPT_POST_FLAG_SET,

                   (OS_ERR       *)&err);

     OSIntExit();                          

#endif

}

 

21.4.4 修改RL-TCPnet的时间基准更新任务

修改RL-TCPnet的时间基准更新任务,添加事件标志函数:OSFlagPost。

/*

*********************************************************************************************************

*    函 数 名: AppTaskStart

*    功能说明: 这是一个启动任务,在多任务系统启动后,必须初始化滴答计数器。本任务主要实现RL-TCPnet的时间

*             基准更新。

*    形    参: p_arg 是在创建该任务时传递的形参

*    返 回 值: 无

     优 先 级: 2

*********************************************************************************************************

*/

static  void  AppTaskStart (void *p_arg)

{

     OS_ERR      err;

 

   (void)p_arg;

    

     CPU_Init();    /* 此函数要优先调用,因为外设驱动中使用的us和ms延迟是基于此函数的 */

     bsp_Init();  

     init_TcpNet ();/* 初始化RL-TCPnet */

    

     BSP_Tick_Init();

    

#if OS_CFG_STAT_TASK_EN > 0u

     OSStatTaskCPUUsageInit(&err);  

#endif

 

#ifdef CPU_CFG_INT_DIS_MEAS_EN

    CPU_IntDisMeasMaxCurReset();

#endif

   

     /* 创建任务 */

    AppTaskCreate();

 

     /* 创建任务间通信机制 */

     AppObjCreate();   

    

    while (1)

     { 

         /* RL-TCPnet时间基准更新函数 */

         timer_tick ();

        

         OSFlagPost ((OS_FLAG_GRP  *)&FLAG_TCPnet,

                       (OS_FLAGS      )0x0001,

                       (OS_OPT        )OS_OPT_POST_FLAG_SET,

                       (OS_ERR       *)&err); 

        

         OSTimeDly(100, OS_OPT_TIME_PERIODIC, &err);

    }

}

 

21.4.5 修改RL-TCPnet的网络主任务

修改RL-TCPnet的网络主任务,函数main_TcpNet的调用不再采用轮询方式,改成事件标志等待方式,即修改为如下形式:

/*

*********************************************************************************************************

*    函 数 名: AppTaskTCPnet

*    功能说明: RL-TCPnet网络主任务

*    形    参: p_arg 是在创建该任务时传递的形参

*    返 回 值: 无

     优 先 级: 3

*********************************************************************************************************

*/

static void AppTaskTCPnet(void *p_arg)

{

     OS_ERR  err; 

     CPU_TS   ts; 

    

     (void)p_arg;

          

     while(1)

     {

         /* RL-TCPnet处理函数 */

         OSFlagPend ((OS_FLAG_GRP  *)&FLAG_TCPnet,

                       (OS_FLAGS      )0x0001,

                       (OS_TICK       )0,

                       (OS_OPT        )OS_OPT_PEND_FLAG_SET_ANY + OS_OPT_PEND_FLAG_CONSUME,

                       (CPU_TS       *)&ts,

                       (OS_ERR       *)&err);

        

         while (main_TcpNet() == __TRUE);

     }  

}

 

21.4.6 最后特别注意优先级安排

最后,用户要特别注意几个任务的优先级安排,非常重要。

  • RL-TCPnet的时间基准更新任务一定要是最高优先级任务。
  • RL-TCPnet的网络主任务,即调用函数main_TcpNet的任务是次高优先级任务。
  • 应用层的任务要比前面两个任务的优先级都低。

 

21.5 FreeRTOS系统实例修改方法

下面针对FreeRTOS系统要做的具体修改做个说明,我们以例程:V6-1026_RL-TCPnet实验_BSD Socket服务器之TCP(FreeRTOS)为例。通过修改函数send_frame,以太网中断和时间基准更新任务都给网络主任务发事件标志,让其得到实时执行,从而实现高效的事件触发框架。

21.5.1 创建事件标志组

创建FreeRTOS的事件标志组:

EventGroupHandle_t xCreatedTCPnetGroup = NULL;

 

/*

*********************************************************************************************************

*    函 数 名: AppObjCreate

*    功能说明: 创建任务通信机制

*    形    参: 无

*    返 回 值: 无

*********************************************************************************************************

*/

static void AppObjCreate (void)

{   

     /* 创建事件标志组 */

     xCreatedTCPnetGroup = xEventGroupCreate();

    

     if(xCreatedTCPnetGroup == NULL)

    {

        /* 没有创建成功,用户可以在这里加入创建失败的处理机制 */

    }

}

 

21.5.2 修改函数send_frame

修改ETH_STM32F4xx.c文件中的函数send_frame,此函数的末尾添加事件标志函数xEventGroupSetBits(宏定义FreeRTOS_EN在bsp.h文件里面使能,针对教程配套例子做的定义,方便管理。大家自己搞时,不必受此限制)。

/*

*********************************************************************************************************

*    函 数 名: send_frame

*    功能说明: 传递数据帧给MAC DMA发送描述符,并使能发送。

*    形    参: 无

*    返 回 值: 无

*********************************************************************************************************

*/

void send_frame (OS_FRAME *frame)

{

     U32 *sp,*dp;

     U32 i,j;

 

     j = TxBufIndex;

    

     /* 等待上一帧数据发送完成 */

     while (Tx_Desc[j].CtrlStat & DMA_TX_OWN);

 

     sp = (U32 *)&frame->data[0];

     dp = (U32 *)(Tx_Desc[j].Addr & ~3);

 

     /* 复制要发送的数据到DMA发送描述符中 */

     for (i = (frame->length + 3) >> 2; i; i--)

     {

         *dp++ = *sp++;

     }

    

     /* 设置数据帧大小 */

     Tx_Desc[j].Size      = frame->length;

    

     /* 发送描述符由DMA控制发送 */

     Tx_Desc[j].CtrlStat |= DMA_TX_OWN;

    

     if (++j == NUM_TX_BUF) j = 0;

     TxBufIndex = j;

    

     /* 开始帧传输 */

     /*

        DMASR 以太网 DMA 状态寄存器

        向ETH_DMASR寄存器[16:0]中的(未保留)位写入1会将其清零,写入 0 则不起作用。

        位1 TPSS:发送过程停止状态 (Transmit process stopped status)

                 当发送停止时,此位置 1。

     */

     ETH->DMASR   = DSR_TPSS;

    

     /*

        DMATPDR 以太网DMA发送轮询请求寄存器

       应用程序使用此寄存器来指示DMA轮询发送描述符列表。

       位 31:0 TPD:发送轮询请求(Transmit poll demand)

                    向这些位写入任何值时,DMA都会读取ETH_DMACHTDR寄存器指向的当前描述符。如果

                    该描述符不可用(由CPU所有),则发送会返回到挂起状态,并将ETH_DMASR寄存器位2

                    进行置位。如果该描述符可用,则发送会继续进行。      

     */

     ETH->DMATPDR = 0;

    

#if USE_FreeRTOS == 1

     xEventGroupSetBits(xCreatedTCPnetGroup, 0x0001);

#endif

}

 

21.5.3 修改以太网中断函数

修改ETH_STM32F4xx.c文件中的以太网中断函数,此函数的末尾添加事件标志函数:xEventGroupSetBitsFromISR(宏定义FreeRTOS_EN在bsp.h文件里面使能,针对教程配套例子做的定义,方便管理。大家自己搞时,不必受此限制)。

/*

*********************************************************************************************************

*    函 数 名: ETH_IRQHandler

*    功能说明: 以太网中断,主要处理从MAC DMA接收描述符接收到的数据帧以及错误标志的处理。

*    形    参: 无

*    返 回 值: 无

*********************************************************************************************************

*/

void ETH_IRQHandler (void)

{

     OS_FRAME *frame;

     U32 i, RxLen;

     U32 *sp,*dp;

 

     i = RxBufIndex;

    

#if USE_FreeRTOS == 1

     BaseType_t xResult;

     BaseType_t xHigherPriorityTaskWoken = pdFALSE;

#endif

 

     /* 循环所有接受描述符列表,遇到未接收到数据的退出循环 */

     do

     {

         /*

              #define DMA_RX_ERROR_MASK   (DMA_RX_ES | DMA_RX_LE | DMA_RX_RWT | \

                                              DMA_RX_RE | DMA_RX_CE)

             

              有错误,放弃此帧数据,错误类型包含如下:

              位15 DMA_RX_ES:错误汇总(Error summary),即CRC错误,接收错误,看门狗超时,延迟冲突等。

             位12 DMA_RX_LE:长度错误(Length error)

                             该位置1时,指示接收帧的实际长度与长度/类型字段的值不符。该字段仅在帧类

                             型位(RDES0[5])复位后有效。

              位4 DMA_RX_RWT:接收看门狗超时 (Receive watchdog timeout)

                             该位置1时,表示接收看门狗计时器在接收当前帧时超时,且当前帧在看门狗超

                             时后被截断了

              位3 DMA_RX_RE: 接收错误 (Receive error)

                            该位置1时,表示在帧接收期间,当发出RX_DV信号时,会发出RX_ERR信号。

              位1 DMA_RX_CE: CRC 错误(CRC error)

                            该位置1时,表示接收的帧发生循环冗余校验(CRC)错误。只有最后一个描述符

                             (RDES0[8])置1时,该字段才有效

         */

         if (Rx_Desc[i].Stat & DMA_RX_ERROR_MASK)

         {

              goto rel;

         }

        

          /*

              #define DMA_RX_SEG_MASK   (DMA_RX_FS | DMA_RX_LS)

             位9 FS:第一个描述符 (First descriptor)

                    该位置1时,指示此描述符包含帧的第一个缓冲区。如果第一个缓冲区的大小为0,则第二

                    个缓冲区将包含帧的帧头。如果第二个缓冲区的大小为0,则下一个描述符将包含帧的帧头。

        

             位8 LS:最后一个描述符 (Last descriptor)

                    该位置1时,指示此描述符指向的缓冲区为帧的最后一个缓冲区。

        

             下面的函数用于判断此帧数据是否只有一个缓冲,初始化接收描述符列表的时候,每个描述符仅设置了

             一个缓冲。

         */

         if ((Rx_Desc[i].Stat & DMA_RX_SEG_MASK) != DMA_RX_SEG_MASK)

         {

              goto rel;

         }

        

         RxLen = ((Rx_Desc[i].Stat >> 16) & 0x3FFF) - 4;

         if (RxLen > ETH_MTU)

         {

              /* 数据包太大,直接放弃 */

              goto rel;

         }

        

          /* 申请动态内存,RxLen或上0x80000000表示动态内存不足了不会调用函数sys_error() */

         frame = alloc_mem (RxLen | 0x80000000);

        

          /* 如果动态内存申请失败了,放弃此帧数据;成功了,通过函数put_in_queue存入队列中 */

         if (frame != NULL)

         {

              sp = (U32 *)(Rx_Desc[i].Addr & ~3);

              dp = (U32 *)&frame->data[0];

              for (RxLen = (RxLen + 3) >> 2; RxLen; RxLen--)

              {

                   *dp++ = *sp++;

              }

              put_in_queue (frame);

         }

        

          /* 设置此接收描述符继续接收新的数据 */

         rel: Rx_Desc[i].Stat = DMA_RX_OWN;

 

         if (++i == NUM_RX_BUF) i = 0;

     }

     while (!(Rx_Desc[i].Stat & DMA_RX_OWN));

    

     RxBufIndex = i;

 

     /*

        DMASR DMA的状态寄存器(DMA status register)

        位7 RBUS:接收缓冲区不可用状态 (Receive buffer unavailable status)

                 此位指示接收列表中的下一个描述符由CPU所拥有,DMA无法获取。接收过程进入挂起状态。

                  要恢复处理接收描述符,CPU应更改描述符的拥有关系,然后发出接收轮询请求命令。如果

                  未发出接收轮询请求命令,则当接收到下一个识别的传入帧时,接收过程会恢复。仅当上一

                  接收描述符由DMA所拥有时,才能将ETH_DMASR[7]置1。

    

        DMAIER的接收缓冲区不可用中断RBUIE是bit7,对于的接收缓冲区不可用状态在DMA状态寄存器中也是bit7。

     */

     if (ETH->DMASR & INT_RBUIE)

     {

         /* 接收缓冲区不可用,重新恢复DMA传输 */

         ETH->DMASR = ETH_DMASR_RBUS;

         ETH->DMARPDR = 0;

     }

    

     /*

        DMASR DMA的状态寄存器(DMA status register)

        这里实现清除中断挂起标志

        位16 ETH_DMASR_NIS:所有正常中断 (Normal interrupt summary)

        位15 ETH_DMASR_AIS:所有异常中断 (Abnormal interrupt summary)

        位6  ETH_DMASR_RS :接收状态 (Receive status)

                            此位指示帧接收已完成,具体的帧状态信息已经包含在描述符中,接收仍保持运行状态。

     */

     ETH->DMASR = ETH_DMASR_NIS | ETH_DMASR_AIS | ETH_DMASR_RS;

    

#if USE_FreeRTOS == 1

     xResult = xEventGroupSetBitsFromISR(xCreatedTCPnetGroup, /* 事件标志组句柄 */

                                              0x0001,              /* 设置bit0 */

                                              &xHigherPriorityTaskWoken );

    

     /* 消息被成功发出 */

     if( xResult != pdFAIL )

     {

         /* 如果xHigherPriorityTaskWoken = pdTRUE,那么退出中断后切到当前最高优先级任务执行 */

         portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

     }

#endif

}

 

21.5.4 修改RL-TCPnet的时间基准更新任务

修改RL-TCPnet的时间基准更新任务,添加事件标志函数:xEventGroupSetBits。

/*

*********************************************************************************************************

*    函 数 名: vTaskStart

*    功能说明: 启动任务,也是最高优先级任务,这里实现RL-TCPnet的时间基准更新

*    形    参: pvParameters 是在创建该任务时传递的形参

*    返 回 值: 无

*   优 先 级: 6 

*********************************************************************************************************

*/

static void vTaskStart(void *pvParameters)

{

     TickType_t xLastWakeTime;

     const TickType_t xFrequency = 100;

    

     /* 初始化RL-TCPnet */

     init_TcpNet ();

    

     /* 获取当前的系统时间 */

    xLastWakeTime = xTaskGetTickCount();

    

    while(1)

    {   

         /* RL-TCPnet时间基准更新函数 */

         timer_tick ();

 

         xEventGroupSetBits(xCreatedTCPnetGroup, 0x0001);

        

         /* vTaskDelayUntil是绝对延迟,vTaskDelay是相对延迟。*/

        vTaskDelayUntil(&xLastWakeTime, xFrequency);

    }

}

 

21.5.5 修改RL-TCPnet的网络主任务

修改RL-TCPnet的网络主任务,函数main_TcpNet的调用不再采用轮询方式,改成事件标志等待方式,即修改为如下形式:

/*

*********************************************************************************************************

*    函 数 名: vTaskTCPnet

*    功能说明: RL-TCPnet网络主任务

*    形    参: pvParameters 是在创建该任务时传递的形参

*    返 回 值: 无

*   优 先 级: 5 

*********************************************************************************************************

*/

static void vTaskTCPnet(void *pvParameters)

{

    while(1)

    {

         /* RL-TCPnet处理函数 */

         xEventGroupWaitBits(xCreatedTCPnetGroup, /* 事件标志组句柄 */

                                 0x0001,             /* 等待被设置 */

                                 pdTRUE,             /* 退出前bit0被清除 */

                                 pdFALSE,            /* 设置为pdFALSE表示仅等待bit0被设置*/

                                 portMAX_DELAY);     /* 永久等待 */

        

         while (main_TcpNet() == __TRUE);

    }

}

 

21.5.6 最后特别注意优先级安排

最后,用户要特别注意几个任务的优先级安排,非常重要。

  • RL-TCPnet的时间基准更新任务一定要是最高优先级任务。
  • RL-TCPnet的网络主任务,即调用函数main_TcpNet的任务是次高优先级任务。
  • 应用层的任务要比前面两个任务的优先级都低。

 

21.6 实验操作和实验例程说明

21.6.1 STM32F407开发板实验

由于本章节配套的例子是由第19章的例子简单修改而来的,所以操作说明和例程说明,直接看第19章即可。不同的地方仅仅是使能了本章节讲解的事件触发方式,本章节配套了如下三个例子:

 

21.6.2 STM32F429开发板实验

由于本章节配套的例子是由第19章的例子简单修改而来的,所以操作说明和例程说明,直接看第19章即可。不同的地方仅仅是使能了本章节讲解的事件触发方式,本章节配套了如下三个例子:

 

21.7 总结

本章节的项目实战性很高,望初学者务必掌握,在实际项目中也推荐采用事件触发方式。

 

版权声明:本文为armfly原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/armfly/p/9506673.html