Hadoop排序,从大的范围来说有两种排序,一种是按照key排序,一种是按照value排序。如果按照value排序,只需在map函数中将key和value对调,然后在reduce函数中在对调回去。从小范围来说排序又分成部分排序,全局排序,辅助排序,二次排序等。本文介绍如何在Hadoop中实现全局排序。
 
全局排序,就是说在一个MapReduce程序产生的输出文件中,所有的结果都是按照某个策略进行排序的,例如降序还是升序。MapReduce只能保证一个分区内的数据是key有序的,一个分区对应一个reduce,因此只有一个reduce就保证了数据全局有序,但是这样又不能用到Hadoop集群的优势。
 
对于多个reduce如何保证数据的全局排序呢?通常的做法是按照key值分区,通过MapReduce的默认分区函数HashPartition将不同范围的key发送到不同的reduce处理,例如一个文件中有key值从1到10000的数据,我们使用两个分区,将1到5000的key发送到partition1,然后由reduce1处理,5001到10000的key发动到partition2然后由reduce2处理,reduce1中的key是按照1到5000的升序排序,reduce2中的key是按照5001到10000的升序排序,这样就保证了整个MapReduce程序的全局排序。但是这样做有两个缺点:
1、当数据量大时会出现OOM。
2、会出现数据倾斜。
 
Hadoop提供TotalOrderPartitioner类用于实现全局排序的功能,并且解决了OOM和数据倾斜的问题。
TotalOrderPartitioner类提供了数据采样器,对key值进行部分采样,然后按照采样结果寻找key值的最佳分割点,将key值均匀的分配到不同的分区中。
TotalOrderPartitioner 类提供了三个采样器,分别是:
  • SplitSampler 分片采样器,从数据分片中采样数据,该采样器不适合已经排好序的数据
  • RandomSampler随机采样器,按照设置好的采样率从一个数据集中采样
  • IntervalSampler间隔采样机,以固定的间隔从分片中采样数据,对于已经排好序的数据效果非常好。
三个采样器都实现了K[] getSample(InputFormat<K,V> inf, Job job)方法,该方法返回的是K[]数组,数组中存放的是根据采样结果返回的key值,即分隔点,MapRdeuce就是根据K[]数组的长度N生成N-1个分区partition数量,然后按照分割点的范围将对应的数据发送到对应的分区中。

下面介绍使用TotalOrderPartitioner类实现全局排序的功能。代码如下:
 Map类:
1 public class TotalSortMap extends Mapper<Text, Text, Text, IntWritable> {
2     @Override
3     protected void map(Text key, Text value,
4                        Context context) throws IOException, InterruptedException {
5         context.write(key, new IntWritable(Integer.parseInt(key.toString())));
6     }
7 }
Reduce类:
1 public class TotalSortReduce extends Reducer<Text, IntWritable, IntWritable, NullWritable> {
2     @Override
3     protected void reduce(Text key, Iterable<IntWritable> values,
4                           Context context) throws IOException, InterruptedException {
5         for (IntWritable value : values)
6             context.write(value, NullWritable.get());
7     }
8 }

入口类:

 1 public class TotalSort extends Configured implements Tool{
 2 
 3     //实现一个Kye比较器,用于比较两个key的大小,将key由字符串转化为Integer,然后进行比较。
 4     public static class KeyComparator extends WritableComparator {
 5         protected KeyComparator() {
 6             super(Text.class, true);
 7         }
 8 
 9         @Override
10         public int compare(WritableComparable writableComparable1, WritableComparable writableComparable2) {
11             int num1 = Integer.parseInt(writableComparable1.toString());
12             int num2 = Integer.parseInt(writableComparable2.toString());
13 
14             return num1 - num2;
15         }
16     }
17     @Override
18     public int run(String[] args) throws Exception {
19         Configuration conf = new Configuration();
20         conf.set("mapreduce.totalorderpartitioner.naturalorder", "false");
21         Job job = Job.getInstance(conf, "Total Sort app");
22         job.setJarByClass(TotalSort.class);
23 
24         //设置读取文件的路径,都是从HDFS中读取。读取文件路径从脚本文件中传进来
25         FileInputFormat.addInputPath(job,new Path(args[0]));
26         //设置mapreduce程序的输出路径,MapReduce的结果都是输入到文件中
27         FileOutputFormat.setOutputPath(job,new Path(args[1]));
28         job.setInputFormatClass(KeyValueTextInputFormat.class);
29         //设置比较器,用于比较数据的大小,然后按顺序排序,该例子主要用于比较两个key的大小
30         job.setSortComparatorClass(KeyComparator.class);
31         job.setNumReduceTasks(3);//设置reduce数量
32 
33         job.setMapOutputKeyClass(Text.class);
34         job.setMapOutputValueClass(IntWritable.class);
35         job.setOutputKeyClass(IntWritable.class);
36         job.setOutputValueClass(NullWritable.class);
37 
38         //设置保存partitions文件的路径
39         TotalOrderPartitioner.setPartitionFile(job.getConfiguration(), new Path(args[2]));
40         //key值采样,0.01是采样率,
41         InputSampler.Sampler<Text, Text> sampler = new InputSampler.RandomSampler<>(0.01, 1000, 100);
42         //将采样数据写入到分区文件中
43         InputSampler.writePartitionFile(job, sampler);
44 
45         job.setMapperClass(TotalSortMap.class);
46         job.setReducerClass(TotalSortReduce.class);
47         //设置分区类。
48         job.setPartitionerClass(TotalOrderPartitioner.class);
49         return job.waitForCompletion(true) ? 0 : 1;
50     }
51     public static void main(String[] args)throws Exception{
52 
53         int exitCode = ToolRunner.run(new TotalSort(), args);
54         System.exit(exitCode);
55     }
56 }
生成测试数据的代码如下:
1 #!/bin/bash
2 do
3 for k in $(seq 1 10000)
4 echo $RANDOM;
5 done
将上面代码保存成create_data.sh,然后执行
sh create_data.sh > test_data.txt
会生成一个test_data.txt的文本文件,文本中的内容是一行一个随机数字
将test_data.txt上传到HDFS中:
hadoop fs -put test_data.txt /data/
将上面的实现全局排序的代码打成一个jar包,然后通过shell文件执行。
执行MapReduce代码的脚本如下:
1 /usr/local/src/hadoop-2.6.1/bin/hadoop jar TotalSort.jar \
2 hdfs://hadoop-master:8020/data/test_data1.txt \
3 hdfs://hadoop-master:8020/total_sort_output \
4 hdfs://hadoop-master:8020/total_sort_partitions
看下运行结果,我们只需要看part-r-00000的尾10行和part-r-00001的头10行数据,只要他们收尾相接就证明书的全局有序的:

下面有几个坑要注意,大家不要踩:

  1. 数据的输入类型必须使用KeyValueTextInputFormat类而不是TextInputFormat类,因为hadoop采样器是对key值采样,而TextInputFormat的key是位置偏移量,value存放的是每行的输入数据,对该key采样没有任何意义。KeyValueTextInputFormat的key存放的是输入数据,对key采样才能更好的划分分区。用法:
    job.setInputFormatClass(KeyValueTextInputFormat.class);
  2. 使用代码conf.set(“mapreduce.totalorderpartitioner.naturalorder”, “false”)设置分区的排序策略,否则是每个分区内有序,而不是全局有序。

  3. 采样器只能是Text,Text类型:InputSampler.Sampler<Text, Text>,否则会报Exception in thread “main” java.io.IOException: wrong key class: org.apache.hadoop.io.Text is not class org.apache.hadoop.io.LongWritable这个错误。

  4. job.setMapOutputKeyClass(Text.class)和job.setMapOutputValueClass(IntWritable.class)这两行代码必须在InputSampler.Sampler<Text, Text> sampler = new InputSampler.RandomSampler<>(0.01, 1000, 100);这行代码之前调用,否则会报Exception in thread “main” java.io.IOException: wrong key class: org.apache.hadoop.io.Text is not class org.apache.hadoop.io.LongWritable错误。
  5. 调用setSortComparatorClass方法设置排序类,对key进行排序。job.setSortComparatorClass(KeyComparator.class);类似例子中的KeyComparator类。否则是按照字典序进行排序。MapReduce默认输出的key是字符类型时,默认是按照字典序排序。

 

版权声明:本文为airnew原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/airnew/p/9595385.html