多线程之间通讯

什么是多线程通讯?

就是多个线程对同一个共享资源,进行不同的操作。

介绍两个API中的方法,这两个是Object里面的方法:

wait();等待,线程从运行状态变为休眠状态

notify();唤醒,线程从休眠状态变为运行状态

现在解决一下这样一个案例:

两个线程,面向一个仓库进行读写操作,仓库里面用一个用户类表示,里面包括姓名和性别这两个属性,A线程往里面写,然后B线程立马读出来,这样交替执行,该怎么设计?

分析一下这个题目:仓库里面是两个属性,两个线程同时对仓库进行操作,肯定要同步,不然会出现数据混乱问题,然后考虑的是让两个线程交替执行,A线程写完后要等待B线程读出以后在继续写,这时候要用到线程之间的通讯。wait和notify的使用必须与synchronized一起使用,wait包括释放锁,并进入阻塞队列这两个语义,这两步需要指定一个监视器来完成;notify是唤醒该线程,要想唤醒,首先需要知道该对象在哪儿,需要获取该对象的锁,才能去该对象对应的等待队列去唤醒一个线程,只有已经释放该对象锁的线程,才能被唤醒然后去竞争该对象锁。

为了更好的看出效果,我让写线程奇数和偶数是写入不同的姓名和性别,看是否打印会出现数据混乱。

代码如下:

class User {
    String name;
    String sex;
    boolean flag = true;
}
class Write extends Thread {
    User user;
    public Write(User user) {
        this.user = user;
    }
    @Override
    public void run() {
        int count = 2;
        while (true) {
            synchronized (user) {
                if (!user.flag) {
                    try {
                        user.wait();
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                }
                if (count % 2 == 0) {
                    user.name = "周瑜";
                    user.sex = "男";
                } else {
                    user.name = "小乔";
                    user.sex = "女";
                }
                count = (count + 1) % 2;
                user.notify();
                user.flag = false;
            }
        }
    }
}
class Read extends Thread {
    User user;
    public Read(User user) {
        this.user = user;
    }
    @Override
    public void run() {
        while (true) {
            synchronized (user) {
                if (user.flag) {
                    try {
                        user.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                System.out.println(user.name + "," + user.sex);
            user.notify();
            user.flag = true;
            }
        }
    }
}
public class OutInputDemo {
    public static void main(String[] args) {
        User user = new User();
        Write write = new Write(user);
        Read read = new Read(user);
        write.start();
        read.start();
    }
}

View Code

wait和sleep的区别:

wait位于同步中,需要释放锁的资源,需要被notify唤醒。

sleep不释放锁的资源,时间到自然醒。

 Lock锁

jdk1.5以后,并发包中新增了Lock接口及其相应的实现类来实现锁的功能,提供了和synchronized一样的同步功能,但是也有区别。

Lock和synchronized的区别:

synchronized是从代码开始上锁,代码结束释放锁,完全自动化,这种锁的效率低、扩展性不高。

Lock锁属于手动的,手动上锁,手动释放锁,灵活性高

在Lock中,不能使用wait和notify,取而代之的为:

Condition   它的功能类似于Object.wait()和Object.notify()的功能。

Condition condition = lock.newCondition();
condition.await();//相当于wait
condition.signal();//相当于notify

 

上面的案例用Lock锁修改为:

class User2 {
    String name;
    String sex;
    boolean flag = true;
    Lock lock = new ReentrantLock();
}
class Write2 extends Thread {
    User2 user;
    Condition condition;
    public Write2(User2 user,Condition condition) {
        this.user = user;
        this.condition = condition;
    }
    @Override
    public void run() {
        int count = 2;
        while (true) {
            try {
                user.lock.lock();
                if (!user.flag) {
                    try {
                        condition.await();
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                }
                if (count % 2 == 0) {
                    user.name = "周瑜";
                    user.sex = "男";
                } else {
                    user.name = "小乔";
                    user.sex = "女";
                }
                count = (count + 1) % 2;
                condition.signal();
                user.flag = false;
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                user.lock.unlock();
            }
        }
    }
}
class Read2 extends Thread {
    User2 user;
    Condition condition;
    public Read2(User2 user,Condition condition) {
        this.user = user;
        this.condition = condition;
    }
    @Override
    public void run() {
        while (true) {
            try {
                user.lock.lock();
                if (user.flag) {
                    try {
                        condition.await();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                System.out.println(user.name + "," + user.sex);
                condition.signal();
                user.flag = true;
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                user.lock.unlock();
            }
        }
    }
}
public class OutInputDemo2 {
    public static void main(String[] args) {
        User2 user = new User2();
        Condition condition = user.lock.newCondition();
        Write2 write = new Write2(user,condition);
        Read2 read = new Read2(user,condition);
        write.start();
        read.start();
    }
}

View Code

 

怎么来停止线程???

stop()???

这个方法已经被弃用,不推荐使用,太暴力,不可恢复,就会导致不安全。

我么使用interrupt来停止线程,API中还有Thread.currentThread().isInterrupted()来进行判断是否中断了线程,案例如下:

class StopThreadDemo2 extends Thread{
    @Override
    public synchronized void run() {
        while(!Thread.currentThread().isInterrupted()){
            for (int i = 0; i < 30; i++) {
                System.out.println(i);
            }
        }
        System.out.println("Thread is interrupt!");
    }
}
public class InterruptDemo {
    public static void main(String[] args) {
        StopThreadDemo2 stopThreadDemo = new StopThreadDemo2();
        stopThreadDemo.start();
        for (int i = 0; i < 10; i++) {
            if (i == 2) {
                stopThreadDemo.interrupt();
            }
            System.out.println("主线程"+i);
        }
    }
}

 ThreadLocal

本地线程,为每一个线程提供一个局部变量。

定义的变量不会共享,是自己的本地局部变量。

看下面这个案例:

class Number {
    int count = 0;
    public int getNumber() {
        count = count + 1;
        return count;
    }
}
class ThreadLocalThread extends Thread {
    Number number;
    public ThreadLocalThread(Number number) {
        this.number = number;
    }
    @Override
    public void run() {
        for (int i = 0; i < 3; i++) {
            System.out.println(Thread.currentThread().getName() + ":" + number.getNumber());
        }
    }
}
public class ThreadLocalDemo {
    public static void main(String[] args) {
        Number number1 = new Number();
        Number number2 = new Number();
        Number number3 = new Number();
        ThreadLocalThread threadLocalThread1 = new ThreadLocalThread(number1);
        ThreadLocalThread threadLocalThread2 = new ThreadLocalThread(number2);
        ThreadLocalThread threadLocalThread3 = new ThreadLocalThread(number3);
        threadLocalThread1.start();
        threadLocalThread2.start();
        threadLocalThread3.start();
    }
}

 这个案例是三个线程分别用来生成自己的数字number,我们定义了三个Number对象,如果有100个线程,是不是需要定义100个number对象,该怎么解决这个问题呢???

class Number {
    int count;
    public static ThreadLocal<Integer> threadLocal = new ThreadLocal<Integer>(){
        protected Integer initialValue() {//初始化threadLocal.get()的值
            return 0;
        };
    };
    public int getNumber() {
        count = threadLocal.get() + 1;
        threadLocal.set(count);//更新threadLocal里面的值
        return count;
    }
}
class ThreadLocalThread extends Thread {
    Number number;
    public ThreadLocalThread(Number number) {
        this.number = number;
    }
    @Override
    public void run() {
        for (int i = 0; i < 3; i++) {
            System.out.println(Thread.currentThread().getName() + ":" + number.getNumber());
        }
    }
}
public class ThreadLocalDemo {
    public static void main(String[] args) {
        Number number = new Number();
        ThreadLocalThread threadLocalThread1 = new ThreadLocalThread(number);
        ThreadLocalThread threadLocalThread2 = new ThreadLocalThread(number);
        ThreadLocalThread threadLocalThread3 = new ThreadLocalThread(number);
        threadLocalThread1.start();
        threadLocalThread2.start();
        threadLocalThread3.start();
    }
}

通过get()和set()进行对本地局部变量的更新。

原理:Map集合存储

get()源码解析:

 public T get() {
        Thread t = Thread.currentThread();//获取当前线程
        ThreadLocalMap map = getMap(t);//获取当前线程的ThreadLocalMap集合,
        if (map != null) {//判断是否存在该线程的Map集合
            ThreadLocalMap.Entry e = map.getEntry(this);//然后就判断该集合里面是否有该对象的值,有的话,就返回存在的值,没有就返回初始值
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        return setInitialValue();
    }

set()源码:

public void set(T value) {//获取当前线程,看是否存在ThreadLocalMap,存在就直接放里面放值,不存在就创建一个ThreadLocalMap
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }

 

版权声明:本文为javatalk原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/javatalk/p/9924531.html