[USACO09Open] Tower of Hay 干草塔
为了调整电灯亮度,贝西要用干草包堆出一座塔,然后爬到牛棚顶去把灯泡换掉。干草包会从传送带上运来,共会出现N包干草,第i包干草的宽度是W i ,高度和长度统一为1。干草塔要从底层开始铺建。贝西会选择最先送来的若干包干草,堆在地上作为第一层,然后再把紧接着送来的几包干草包放在第二层, 再铺建第三层……重复这个过程, 一直到所有的干 草全部用完。每层的干草包必须紧靠在一起,不出现缝隙,而且为了建筑稳定,上层干草的宽度不能超过下层的宽度。 按顺序运来的干草包一定要都用上, 不能将其中几个干草包弃置不用。贝西的目标是建一座最高的塔,请你来帮助她完成这个任务吧。
输入格式
第一行:单个整数:\(N,1≤N≤100000\)第二行到\(N + 1\)行:第\(i + 1\)行有一个整数\(W_i,1 ≤ W_i ≤ 10000\)
输出格式
第一行:单个整数,表示可以建立的最高高度
样例输入
3
1
2
3
样例输出
2
题解
首先考虑贪心的做法。让我们看下面这张图
如图,一个小学生都明白的道理:对于一个三角形,对它进行等面积变换,为了使其越长,其形状必须越瘦。同理,在这道题中我们可以将干草堆抽象为三角形,为了让干草堆更高,我们只能让其更瘦。这里引用ZKW大佬的证明过程。
任意取出一个能使层数最高的方案,设有\(C_A\)层,把其中从下往上每一层最大的块编号记为\(A_i\);任取一个能使底边最短的方案,设有\(C_B\)层,把其中从下往上每一层最大的块编号记为\(B_i\)。显然\(A_1>=B_1,A*C_B<=B*C_B\),这说明至少存在一个k属于(1,\(C_B\)),满足\(A*k-1>=B*k-1且A*k<=B*k\)。也就是说,方案A第K层完全被方案B第K 层包含。构造一个新方案,第K层往上按方案 A,往下按方案B,两边都不要的块放中间当第K层。新方案的层数与A相同,而底边长度与B相同。证毕。
这时我们选择枚举最底层的组成,设\(f[i]\)表示从\(n到i\)中最底层的宽度,则可知\(f[i]=min(sum[j-1到i])\)。由于上一层的宽度永远小于下一层的宽度,所以\(f[j]<=sum[j-1到i]\)
再观察一下,由于所有的干草堆要全部使用且对于第\(i-1\)个干草堆放在第\(h\)层时,第\(i\)个必然放在第\(h\)层或第\(h+1\)层,我们可以令\(sum[i]\)表示宽度的前缀和,而\(sum[i]\)是随i的增大而增大的,所以从\(i到n\)一旦发现一个符合条件的决策\(j\),便将其取出来更新\(f[i]\)。但是因为这样做的复杂度较大,仍不能通过所有数据。
再次分析,发现所有的决策的值(例如对于决策\(j\)值即为\(sum[j-1])由n\)往前都是单调递减的,也就是一个比一个优。因此决定性的因素则是他们的生效时间。
#include <bits/stdc++.h>
#define maxn 100009
using namespace std;
inline char get(){
static char buf[3000],*p1=buf,*p2=buf;
return p1==p2 && (p2=(p1=buf)+fread(buf,1,3000,stdin),p1==p2)?EOF:*p1++;
}
inline int read(){
register char c=get();register int f=1,_=0;
while(c>'9' || c<'0')f=(c=='-')?-1:1,c=get();
while(c<='9' && c>='0')_=(_<<3)+(_<<1)+(c^48),c=get();
return _*f;
}
int num[maxn],dp[maxn],f[maxn],sum[maxn],w[maxn];
int n;
int main(){
//freopen("1.txt","r",stdin);
n=read();
for(register int i=1;i<=n;i++){
w[i]=read();
sum[i]=sum[i-1]+w[i];
}
num[1]=n+1;
int h=1,t=1;
for(register int i=n;i;i--){
while(h<t && f[num[h+1]]<=sum[num[h+1]-1]-sum[i-1]) ++h;
f[i]=sum[num[h]-1]-sum[i-1];
dp[i]=dp[num[h]]+1;
num[++t]=i;
while((t>h) && (f[num[t-1]]-sum[num[t-1]-1]+sum[num[t]-1]>f[num[t]]))t--,num[t]=num[t+1];
}
cout<<dp[1];
return 0;
}