二进制安装部署kubernetes集群---超详细教程
本文收录在容器技术学习系列文章总目录
前言:本篇博客是博主踩过无数坑,反复查阅资料,一步步搭建完成后整理的个人心得,分享给大家~~~
本文所需的安装包,都上传在我的网盘中,需要的可以打赏博主一杯咖啡钱,然后私密博主,博主会很快答复呦~
00.组件版本和配置策略
00-01.组件版本
- Kubernetes 1.10.4
- Docker 18.03.1-ce
- Etcd 3.3.7
- Flanneld 0.10.0
- 插件:
- Coredns
- Dashboard
- Heapster (influxdb、grafana)
- Metrics-Server
- EFK (elasticsearch、fluentd、kibana)
- 镜像仓库:
- docker registry
- harbor
00-02.主要配置策略
kube-apiserver:
- 使用 keepalived 和 haproxy 实现 3 节点高可用;
- 关闭非安全端口 8080 和匿名访问;
- 在安全端口 6443 接收 https 请求;
- 严格的认证和授权策略 (x509、token、RBAC);
- 开启 bootstrap token 认证,支持 kubelet TLS bootstrapping;
- 使用 https 访问 kubelet、etcd,加密通信;
kube-controller-manager:
- 3 节点高可用;
- 关闭非安全端口,在安全端口 10252 接收 https 请求;
- 使用 kubeconfig 访问 apiserver 的安全端口;
- 自动 approve kubelet 证书签名请求 (CSR),证书过期后自动轮转;
- 各 controller 使用自己的 ServiceAccount 访问 apiserver;
kube-scheduler:
- 3 节点高可用;
- 使用 kubeconfig 访问 apiserver 的安全端口;
kubelet:
- 使用 kubeadm 动态创建 bootstrap token,而不是在 apiserver 中静态配置;
- 使用 TLS bootstrap 机制自动生成 client 和 server 证书,过期后自动轮转;
- 在 KubeletConfiguration 类型的 JSON 文件配置主要参数;
- 关闭只读端口,在安全端口 10250 接收 https 请求,对请求进行认证和授权,拒绝匿名访问和非授权访问;
- 使用 kubeconfig 访问 apiserver 的安全端口;
kube-proxy:
- 使用 kubeconfig 访问 apiserver 的安全端口;
- 在 KubeProxyConfiguration 类型的 JSON 文件配置主要参数;
- 使用 ipvs 代理模式;
集群插件:
- DNS:使用功能、性能更好的 coredns;
- Dashboard:支持登录认证;
- Metric:heapster、metrics-server,使用 https 访问 kubelet 安全端口;
- Log:Elasticsearch、Fluend、Kibana;
- Registry 镜像库:docker-registry、harbor;
01.系统初始化
01-01.集群机器
- kube-master:192.168.10.108
- kube-node1:192.168.10.109
- kube-node2:192.168.10.110
本文档中的 etcd 集群、master 节点、worker 节点均使用这三台机器。
在每个服务器上都要执行以下全部操作,如果没有特殊指明,本文档的所有操作均在kube-master 节点上执行
01-02.主机名
1、设置永久主机名称,然后重新登录
$ sudo hostnamectl set-hostname kube-master
$ sudo hostnamectl set-hostname kube-node1
$ sudo hostnamectl set-hostname kube-node2
2、修改 /etc/hostname 文件,添加主机名和 IP 的对应关系:
$ vim /etc/hosts
192.168.10.108 kube-master
192.168.10.109 kube-node1
192.168.10.110 kube-node2
01-03.添加 k8s 和 docker 账户
1、在每台机器上添加 k8s 账户
$ sudo useradd -m k8s
$ sudo sh -c \’echo along |passwd k8s –stdin\’ #为k8s 账户设置密码
2、修改visudo权限
$ sudo visudo #去掉%wheel ALL=(ALL) NOPASSWD: ALL这行的注释
$ sudo grep \’%wheel.*NOPASSWD: ALL\’ /etc/sudoers
%wheel ALL=(ALL) NOPASSWD: ALL
3、将k8s用户归到wheel组
$ gpasswd -a k8s wheel
Adding user k8s to group wheel
$ id k8s
uid=1000(k8s) gid=1000(k8s) groups=1000(k8s),10(wheel)
4、在每台机器上添加 docker 账户,将 k8s 账户添加到 docker 组中,同时配置 dockerd 参数(注:安装完docker才有):
$ sudo useradd -m docker
$ sudo gpasswd -a k8s docker
$ sudo mkdir -p /opt/docker/
$ vim /opt/docker/daemon.json #可以后续部署docker时在操作
{
”registry-mirrors”: [“https://hub-mirror.c.163.com”, “https://docker.mirrors.ustc.edu.cn”],
”max-concurrent-downloads”: 20
}
01-04.无密码 ssh 登录其它节点
1、生成秘钥对
[root@kube-master ~]# ssh-keygen #连续回车即可
2、将自己的公钥发给其他服务器
[root@kube-master ~]# ssh-copy-id root@kube-master
[root@kube-master ~]# ssh-copy-id root@kube-node1
[root@kube-master ~]# ssh-copy-id root@kube-node2
[root@kube-master ~]# ssh-copy-id k8s@kube-master
[root@kube-master ~]# ssh-copy-id k8s@kube-node1
[root@kube-master ~]# ssh-copy-id k8s@kube-node2
01-05.将可执行文件路径 /opt/k8s/bin 添加到 PATH 变量
在每台机器上添加环境变量:
$ sudo sh -c “echo \’PATH=/opt/k8s/bin:$PATH:$HOME/bin:$JAVA_HOME/bin\’ >> /etc/profile.d/k8s.sh”
$ source /etc/profile.d/k8s.sh
01-06.安装依赖包
在每台机器上安装依赖包:
CentOS:
$ sudo yum install -y epel-release
$ sudo yum install -y conntrack ipvsadm ipset jq sysstat curl iptables libseccomp
Ubuntu:
$ sudo apt-get install -y conntrack ipvsadm ipset jq sysstat curl iptables libseccomp
注:ipvs 依赖 ipset;
01-07.关闭防火墙
在每台机器上关闭防火墙:
① 关闭服务,并设为开机不自启
$ sudo systemctl stop firewalld
$ sudo systemctl disable firewalld
② 清空防火墙规则
$ sudo iptables -F && sudo iptables -X && sudo iptables -F -t nat && sudo iptables -X -t nat
$ sudo iptables -P FORWARD ACCEPT
01-08.关闭 swap 分区
1、如果开启了 swap 分区,kubelet 会启动失败(可以通过将参数 –fail-swap-on 设置为false 来忽略 swap on),故需要在每台机器上关闭 swap 分区:
$ sudo swapoff -a
2、为了防止开机自动挂载 swap 分区,可以注释 /etc/fstab 中相应的条目:
$ sudo sed -i \’/ swap / s/^\(.*\)$/#\1/g\’ /etc/fstab
01-09.关闭 SELinux
1、关闭 SELinux,否则后续 K8S 挂载目录时可能报错 Permission denied :
$ sudo setenforce 0
2、修改配置文件,永久生效;
$ grep SELINUX /etc/selinux/config
SELINUX=disabled
01-10.关闭 dnsmasq (可选)
linux 系统开启了 dnsmasq 后(如 GUI 环境),将系统 DNS Server 设置为 127.0.0.1,这会导致 docker 容器无法解析域名,需要关闭它:
$ sudo service dnsmasq stop
$ sudo systemctl disable dnsmasq
01-11.加载内核模块
$ sudo modprobe br_netfilter
$ sudo modprobe ip_vs
01-12.设置系统参数
$ cat > kubernetes.conf <<EOF
net.bridge.bridge-nf-call-iptables=1 net.bridge.bridge-nf-call-ip6tables=1 net.ipv4.ip_forward=1 net.ipv4.tcp_tw_recycle=0 vm.swappiness=0 vm.overcommit_memory=1 vm.panic_on_oom=0 fs.inotify.max_user_watches=89100 fs.file-max=52706963 fs.nr_open=52706963 net.ipv6.conf.all.disable_ipv6=1 net.netfilter.nf_conntrack_max=2310720
EOF
$ sudo cp kubernetes.conf /etc/sysctl.d/kubernetes.conf
$ sudo sysctl -p /etc/sysctl.d/kubernetes.conf
$ sudo mount -t cgroup -o cpu,cpuacct none /sys/fs/cgroup/cpu,cpuacct
注:
- tcp_tw_recycle 和 Kubernetes 的 NAT 冲突,必须关闭 ,否则会导致服务不通;
- 关闭不使用的 IPV6 协议栈,防止触发 docker BUG;
01-13.设置系统时区
1、调整系统 TimeZone
$ sudo timedatectl set-timezone Asia/Shanghai
2、将当前的 UTC 时间写入硬件时钟
$ sudo timedatectl set-local-rtc 0
3、重启依赖于系统时间的服务
$ sudo systemctl restart rsyslog
$ sudo systemctl restart crond
01-14.更新系统时间
$ yum -y install ntpdate
$ sudo ntpdate cn.pool.ntp.org
01-15.创建目录
在每台机器上创建目录:
$ sudo mkdir -p /opt/k8s/bin
$ sudo mkdir -p /opt/k8s/cert
$ sudo mkdir -p /opt/etcd/cert
$ sudo mkdir -p /opt/lib/etcd
$ sudo mkdir -p /opt/k8s/script
$ chown -R k8s /opt/*
01-16.检查系统内核和模块是否适合运行 docker (仅适用于linux 系统)
$ curl https://raw.githubusercontent.com/docker/docker/master/contrib/check-config.sh > check-config.sh
$ chmod +x check-config.sh
$ bash ./check-config.sh
02.创建 CA 证书和秘钥
- 为确保安全, kubernetes 系统各组件需要使用 x509 证书对通信进行加密和认证。
- CA (Certificate Authority) 是自签名的根证书,用来签名后续创建的其它证书。
本文档使用 CloudFlare 的 PKI 工具集 cfssl 创建所有证书。
02-01.安装 cfssl 工具集
mkdir -p /opt/k8s/cert && sudo chown -R k8s /opt/k8s && cd /opt/k8s
wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64
mv cfssl_linux-amd64 /opt/k8s/bin/cfssl
wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64
mv cfssljson_linux-amd64 /opt/k8s/bin/cfssljson
wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64
mv cfssl-certinfo_linux-amd64 /opt/k8s/bin/cfssl-certinfo
chmod +x /opt/k8s/bin/*
02-02.创建根证书 (CA)
CA 证书是集群所有节点共享的,只需要创建一个 CA 证书,后续创建的所有证书都由它签名。
02-02-01 创建配置文件
CA 配置文件用于配置根证书的使用场景 (profile) 和具体参数 (usage,过期时间、服务端认证、客户端认证、加密等),后续在签名其它证书时需要指定特定场景。
[root@kube-master ~]# cd /opt/k8s/cert
[root@kube-master cert]# vim ca-config.json
{
"signing": {
"default": {
"expiry": "87600h"
},
"profiles": {
"kubernetes": {
"usages": [
"signing",
"key encipherment",
"server auth",
"client auth"
],
"expiry": "87600h"
}
}
}
}
注:
① signing :表示该证书可用于签名其它证书,生成的 ca.pem 证书中CA=TRUE ;
② server auth :表示 client 可以用该该证书对 server 提供的证书进行验证;
③ client auth :表示 server 可以用该该证书对 client 提供的证书进行验证;
02-02-02 创建证书签名请求文件
[root@kube-master cert]# vim ca-csr.json
{
"CN": "kubernetes",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"ST": "BeiJing",
"L": "BeiJing",
"O": "k8s",
"OU": "4Paradigm"
}
]
}
注:
① CN: Common Name ,kube-apiserver 从证书中提取该字段作为请求的用户名(User Name),浏览器使用该字段验证网站是否合法;
② O: Organization ,kube-apiserver 从证书中提取该字段作为请求用户所属的组(Group);
③ kube-apiserver 将提取的 User、Group 作为 RBAC 授权的用户标识;
02-02-03 生成 CA 证书和私钥
[root@kube-master cert]# cfssl gencert -initca ca-csr.json | cfssljson -bare ca
[root@kube-master cert]# ls
ca-config.json ca.csr ca-csr.json ca-key.pem ca.pem
02-02-04 分发证书文件
将生成的 CA 证书、秘钥文件、配置文件拷贝到所有节点的/opt/k8s/cert 目录下:
[root@kube-master ~]# vim /opt/k8s/script/scp_k8scert.sh
NODE_IPS=("192.168.10.108" "192.168.10.109" "192.168.10.110") for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" ssh root@${node_ip} "mkdir -p /opt/k8s/cert && chown -R k8s /opt/k8s" scp /opt/k8s/cert/ca*.pem /opt/k8s/cert/ca-config.json k8s@${node_ip}:/opt/k8s/cert done
[root@kube-master ~]# chmod +x /opt/k8s/script/scp_k8scert.sh && /opt/k8s/script/scp_k8scert.sh
03.部署 kubectl 命令行工具
kubectl 是 kubernetes 集群的命令行管理工具,本文档介绍安装和配置它的步骤。
kubectl 默认从 ~/.kube/config 文件读取 kube-apiserver 地址、证书、用户名等信息,如果没有配置,执行 kubectl 命令时可能会出错:
$ kubectl get pods
The connection to the server localhost:8080 was refused – did you specify the right host or port?
本文档只需要部署一次,生成的 kubeconfig 文件与机器无关。
03-01.下载kubectl 二进制文件
下载和解压
kubectl二进制文件需要科学上网下载,我已经下载到我的网盘,有需要的小伙伴联系我~
[root@kube-master ~]# wget https://dl.k8s.io/v1.10.4/kubernetes-client-linux-amd64.tar.gz
[root@kube-master ~]# tar -xzvf kubernetes-client-linux-amd64.tar.gz
03-02.创建 admin 证书和私钥
- kubectl 与 apiserver https 安全端口通信,apiserver 对提供的证书进行认证和授权。
- kubectl 作为集群的管理工具,需要被授予最高权限。这里创建具有最高权限的admin 证书。
03-02-01 创建证书签名请求
[root@kube-master ~]# cd /opt/k8s/cert/
cat > admin-csr.json <<EOF
{ "CN": "admin", "hosts": [], "key": { "algo": "rsa", "size": 2048 }, "names": [ { "C": "CN", "ST": "BeiJing", "L": "BeiJing", "O": "system:masters", "OU": "4Paradigm" } ] }
注:
① O 为 system:masters ,kube-apiserver 收到该证书后将请求的 Group 设置为system:masters;
② 预定义的 ClusterRoleBinding cluster-admin 将 Group system:masters 与Role cluster-admin 绑定,该 Role 授予所有 API的权限;
③ 该证书只会被 kubectl 当做 client 证书使用,所以 hosts 字段为空;
03-02-02 生成证书和私钥
[root@kube-master cert]# cfssl gencert -ca=/opt/k8s/cert/ca.pem \
-ca-key=/opt/k8s/cert/ca-key.pem \
-config=/opt/k8s/cert/ca-config.json \
-profile=kubernetes admin-csr.json | cfssljson_linux-amd64 -bare admin
[root@kube-master cert]# ls admin*
admin.csr admin-csr.json admin-key.pem admin.pem
03-03.创建和分发 kubeconfig 文件
03-03-01 创建kubeconfig文件
kubeconfig 为 kubectl 的配置文件,包含访问 apiserver 的所有信息,如 apiserver 地址、CA 证书和自身使用的证书;
① 设置集群参数,(–server=${KUBE_APISERVER} ,指定IP和端口;我使用的是haproxy的VIP和端口;如果没有haproxy代理,就用实际服务的IP和端口;如:https://192.168.10.108:6443)
[root@kube-master ~]# kubectl config set-cluster kubernetes \
–certificate-authority=/opt/k8s/cert/ca.pem \
–embed-certs=true \
–server=https://192.168.10.10:8443 \
–kubeconfig=/root/.kube/kubectl.kubeconfig
② 设置客户端认证参数
[root@kube-master ~]# kubectl config set-credentials kube-admin \
–client-certificate=/opt/k8s/cert/admin.pem \
–client-key=/opt/k8s/cert/admin-key.pem \
–embed-certs=true \
–kubeconfig=/root/.kube/kubectl.kubeconfig
③ 设置上下文参数
[root@kube-master ~]# kubectl config set-context kube-admin@kubernetes \
–cluster=kubernetes \
–user=kube-admin \
–kubeconfig=/root/.kube/kubectl.kubeconfig
④ 设置默认上下文
[root@kube-master ~]# kubectl config use-context kube-admin@kubernetes –kubeconfig=/root/.kube/kubectl.kubeconfig
注:在后续kubernetes认证,文章中会详细讲解
- –certificate-authority :验证 kube-apiserver 证书的根证书;
- –client-certificate 、 –client-key :刚生成的 admin 证书和私钥,连接 kube-apiserver 时使用;
- –embed-certs=true :将 ca.pem 和 admin.pem 证书内容嵌入到生成的kubectl.kubeconfig 文件中(不加时,写入的是证书文件路径);
[root@kube-master ~]# chmod +x /opt/k8s/script/kubectl_environment.sh && /opt/k8s/script/kubectl_environment.sh
03-03-01 验证kubeconfig文件
[root@kube-master ~]# ls /root/.kube/kubectl.kubeconfig
/root/.kube/kubectl.kubeconfig
[root@kube-master ~]# kubectl config view –kubeconfig=/root/.kube/kubectl.kubeconfig
apiVersion: v1
clusters:
- cluster:
certificate-authority-data: REDACTED
server: https://192.168.10.10:8443
name: kubernetes
contexts:
- context:
cluster: kubernetes
user: kube-admin
name: kube-admin@kubernetes
current-context: kube-admin@kubernetes
kind: Config
preferences: {}
users:
- name: kube-admin
user:
client-certificate-data: REDACTED
client-key-data: REDACTED
03-03-03 分发 kubeclt 和kubeconfig 文件,分发到所有使用kubectl 命令的节点
[root@kube-master ~]# vim /opt/k8s/script/scp_kubectl.sh
NODE_IPS=(“192.168.10.108” “192.168.10.109” “192.168.10.110”)
NODE_IPS=("192.168.10.108" "192.168.10.109" "192.168.10.110") for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" scp /root/kubernetes/client/bin/kubectl k8s@${node_ip}:/opt/k8s/bin/ ssh k8s@${node_ip} "chmod +x /opt/k8s/bin/*" ssh k8s@${node_ip} "mkdir -p ~/.kube" scp ~/.kube/config k8s@${node_ip}:~/.kube/config ssh root@${node_ip} "mkdir -p ~/.kube" scp ~/.kube/config root@${node_ip}:~/.kube/config done
[root@kube-master ~]# chmod +x /opt/k8s/script/scp_kubectl.sh && /opt/k8s/script/scp_kubectl.sh
04.部署 etcd 集群
etcd 是基于 Raft 的分布式 key-value 存储系统,由 CoreOS 开发,常用于服务发现、共享配置以及并发控制(如 leader 选举、分布式锁等)。kubernetes 使用 etcd 存储所有运行数据。
本文档介绍部署一个三节点高可用 etcd 集群的步骤:
① 下载和分发 etcd 二进制文件
② 创建 etcd 集群各节点的 x509 证书,用于加密客户端(如 etcdctl) 与 etcd 集群、etcd 集群之间的数据流;
③ 创建 etcd 的 systemd unit 文件,配置服务参数;
④ 检查集群工作状态;
04-01.下载etcd 二进制文件
到 https://github.com/coreos/etcd/releases 页面下载最新版本的发布包:
[root@kube-master ~]# https://github.com/coreos/etcd/releases/download/v3.3.7/etcd-v3.3.7-linux-amd64.tar.gz
[root@kube-master ~]# tar -xvf etcd-v3.3.7-linux-amd64.tar.gz
04-02.创建 etcd 证书和私钥
04-02-01 创建证书签名请求
[root@kube-master ~]# cd /opt/etcd/cert
[root@kube-master cert]# cat > etcd-csr.json <<EOF
{ "CN": "etcd", "hosts": [ "127.0.0.1", "192.168.10.108", "192.168.10.109", "192.168.10.110" ], "key": { "algo": "rsa", "size": 2048 }, "names": [ { "C": "CN", "ST": "BeiJing", "L": "BeiJing", "O": "k8s", "OU": "4Paradigm" } ] }
EOF
注:hosts 字段指定授权使用该证书的 etcd 节点 IP 或域名列表,这里将 etcd 集群的三个节点 IP 都列在其中;
04-02-02 生成证书和私钥
[root@kube-master cert]# cfssl gencert -ca=/opt/k8s/cert/ca.pem \
-ca-key=/opt/k8s/cert/ca-key.pem \
-config=/opt/k8s/cert/ca-config.json \
-profile=kubernetes etcd-csr.json | cfssljson_linux-amd64 -bare etcd
[root@kube-master cert]# ls etcd*
etcd.csr etcd-csr.json etcd-key.pem etcd.pem
04-02-03 分发生成的证书和私钥到各 etcd 节点
[root@kube-master ~]# vim /opt/k8s/script/scp_etcd.sh
NODE_IPS=(“192.168.10.108” “192.168.10.109” “192.168.10.110”)
for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" scp /root/etcd-v3.3.7-linux-amd64/etcd* k8s@${node_ip}:/opt/k8s/bin ssh k8s@${node_ip} "chmod +x /opt/k8s/bin/*" ssh root@${node_ip} "mkdir -p /opt/etcd/cert && chown -R k8s /opt/etcd/cert" scp /opt/etcd/cert/etcd*.pem k8s@${node_ip}:/opt/etcd/cert/ done
04-03.创建etcd 的systemd unit 模板及etcd 配置文件
04-03-01 创建etcd 的systemd unit 模板
[root@kube-master ~]# cat > /opt/etcd/etcd.service.template <<EOF
[Unit] Description=Etcd Server After=network.target After=network-online.target Wants=network-online.target Documentation=https://github.com/coreos [Service] User=k8s Type=notify WorkingDirectory=/opt/lib/etcd/ ExecStart=/opt/k8s/bin/etcd \ --data-dir=/opt/lib/etcd \ --name ##NODE_NAME## \ --cert-file=/opt/etcd/cert/etcd.pem \ --key-file=/opt/etcd/cert/etcd-key.pem \ --trusted-ca-file=/opt/k8s/cert/ca.pem \ --peer-cert-file=/opt/etcd/cert/etcd.pem \ --peer-key-file=/opt/etcd/cert/etcd-key.pem \ --peer-trusted-ca-file=/opt/k8s/cert/ca.pem \ --peer-client-cert-auth \ --client-cert-auth \ --listen-peer-urls=https://##NODE_IP##:2380 \ --initial-advertise-peer-urls=https://##NODE_IP##:2380 \ --listen-client-urls=https://##NODE_IP##:2379,http://127.0.0.1:2379\ --advertise-client-urls=https://##NODE_IP##:2379 \ --initial-cluster-token=etcd-cluster-0 \ --initial-cluster=etcd0=https://192.168.10.108:2380,etcd1=https://192.168.10.109:2380,etcd2=https://192.168.10.110:2380 \ --initial-cluster-state=new Restart=on-failure RestartSec=5 LimitNOFILE=65536 [Install] WantedBy=multi-user.target
EOF
注:
- User :指定以 k8s 账户运行;
- WorkingDirectory 、 –data-dir :指定工作目录和数据目录为/opt/lib/etcd ,需在启动服务前创建这个目录;
- –name :指定节点名称,当 –initial-cluster-state 值为 new 时, –name 的参数值必须位于 –initial-cluster 列表中;
- –cert-file 、 –key-file :etcd server 与 client 通信时使用的证书和私钥;
- –trusted-ca-file :签名 client 证书的 CA 证书,用于验证 client 证书;
- –peer-cert-file 、 –peer-key-file :etcd 与 peer 通信使用的证书和私钥;
- –peer-trusted-ca-file :签名 peer 证书的 CA 证书,用于验证 peer 证书;
04-04.为各节点创建和分发 etcd systemd unit 文件
[root@kube-master ~]# cd /opt/k8s/script
[root@kube-master script]# vim etcd_service.sh
NODE_NAMES=("etcd0" "etcd1" "etcd2") NODE_IPS=("192.168.10.108" "192.168.10.109" "192.168.10.110") #替换模板文件中的变量,为各节点创建 systemd unit 文件 for (( i=0; i < 3; i++ ));do sed -e "s/##NODE_NAME##/${NODE_NAMES[i]}/g" -e "s/##NODE_IP##/${NODE_IPS[i]}/g" /opt/etcd/etcd.service.template > /opt/etcd/etcd-${NODE_IPS[i]}.service done #分发生成的 systemd unit 和etcd的配置文件: for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" ssh root@${node_ip} "mkdir -p /opt/lib/etcd && chown -R k8s /opt/lib/etcd" scp /opt/etcd/etcd-${node_ip}.service root@${node_ip}:/etc/systemd/system/etcd.service done
[root@kube-master script]# chmod +x /opt/k8s/script/etcd_service.sh && /opt/k8s/script/etcd_service.sh
[root@kube-master script]# ls /opt/etcd/*.service
/opt/etcd/etcd-192.168.10.108.service /opt/etcd/etcd-192.168.10.110.service
/opt/etcd/etcd-192.168.10.109.service
[root@kube-master script]# ls /etc/systemd/system/etcd.service
/etc/systemd/system/etcd.service
04-05.启动 etcd 服务
[root@kube-master script]# vim /opt/k8s/script/etcd.sh
NODE_IPS=("192.168.10.108" "192.168.10.109" "192.168.10.110") #启动 etcd 服务 for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" ssh root@${node_ip} "systemctl daemon-reload && systemctl enable etcd && systemctl start etcd" done #检查启动结果,确保状态为 active (running) for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" ssh k8s@${node_ip} "systemctl status etcd|grep Active" done #验证服务状态,输出均为healthy 时表示集群服务正常 for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" ETCDCTL_API=3 /opt/k8s/bin/etcdctl \ --endpoints=https://${node_ip}:2379 \ --cacert=/opt/k8s/cert/ca.pem \ --cert=/opt/etcd/cert/etcd.pem \ --key=/opt/etcd/cert/etcd-key.pem endpoint health done
[root@kube-master script]# chmod +x etcd.sh && ./etcd.sh
>>> 192.168.10.108
Created symlink from /etc/systemd/system/multi-user.target.wants/etcd.service to /etc/systemd/system/etcd.service.
>>> 192.168.10.109
Created symlink from /etc/systemd/system/multi-user.target.wants/etcd.service to /etc/systemd/system/etcd.service.
>>> 192.168.10.110
Created symlink from /etc/systemd/system/multi-user.target.wants/etcd.service to /etc/systemd/system/etcd.service.
#确保状态为 active (running),否则查看日志,确认原因:$ journalctl -u etcd
>>> 192.168.10.108
Active: active (running) since Mon 2018-11-26 17:41:00 CST; 12min ago
>>> 192.168.10.109
Active: active (running) since Mon 2018-11-26 17:41:00 CST; 12min ago
>>> 192.168.10.110
Active: active (running) since Mon 2018-11-26 17:41:01 CST; 12min ago
#输出均为healthy 时表示集群服务正常
>>> 192.168.10.108
https://192.168.10.108:2379 is healthy: successfully committed proposal: took = 1.373318ms
>>> 192.168.10.109
https://192.168.10.109:2379 is healthy: successfully committed proposal: took = 2.371807ms
>>> 192.168.10.110
https://192.168.10.110:2379 is healthy: successfully committed proposal: took = 1.764309ms
05.部署 flannel 网络
- kubernetes 要求集群内各节点(包括 master 节点)能通过 Pod 网段互联互通。flannel 使用 vxlan 技术为各节点创建一个可以互通的 Pod 网络,使用的端口为 UDP 8472,需要开放该端口(如公有云 AWS 等)。
- flannel 第一次启动时,从 etcd 获取 Pod 网段信息,为本节点分配一个未使用的 /24段地址,然后创建 flannel.1 (也可能是其它名称,如 flannel1 等) 接口。
- flannel 将分配的 Pod 网段信息写入 /run/flannel/docker 文件,docker 后续使用这个文件中的环境变量设置 docker0 网桥。
05-01.下载flanneld 二进制文件
到 https://github.com/coreos/flannel/releases 页面下载最新版本的发布包:
[root@kube-master ~]# wget https://github.com/coreos/flannel/releases/download/v0.10.0/flannel-v0.10.0-linux-amd64.tar.gz
[root@kube-master ~]# tar -xzvf flannel-v0.10.0-linux-amd64.tar.gz -C flannel
05-02.创建 flannel 证书和私钥
flannel 从 etcd 集群存取网段分配信息,而 etcd 集群启用了双向 x509 证书认证,所以需要为 flanneld 生成证书和私钥。
05-02-01 创建证书签名请求:
[root@kube-master ~]# cd /opt/flannel/cert
cat > flanneld-csr.json <<EOF
{ "CN": "flanneld", "hosts": [], "key": { "algo": "rsa", "size": 2048 }, "names": [ { "C": "CN", "ST": "BeiJing", "L": "BeiJing", "O": "k8s", "OU": "4Paradigm" } ] }
EOF
该证书只会被 kubectl 当做 client 证书使用,所以 hosts 字段为空;
05-02-02 生成证书和私钥
[root@kube-master cert]# cfssl gencert -ca=/opt/k8s/cert/ca.pem \
-ca-key=/opt/k8s/cert/ca-key.pem \
-config=/opt/k8s/cert/ca-config.json \
-profile=kubernetes flanneld-csr.json | cfssljson -bare flanneld
[root@kube-master cert]# ls
flanneld.csr flanneld-csr.json flanneld-key.pem flanneld.pemls flanneld*pem
05-02-03 将flanneld 二进制文件he1生成的证书和私钥分发到所有节点
cat > /opt/k8s/script/scp_flannel.sh <<EOF
NODE_IPS=("192.168.10.108" "192.168.10.109" "192.168.10.110") for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" scp /root/flannel/{flanneld,mk-docker-opts.sh} k8s@${node_ip}:/opt/k8s/bin/ ssh k8s@${node_ip} "chmod +x /opt/k8s/bin/*" ssh root@${node_ip} "mkdir -p /opt/flannel/cert && chown -R k8s /opt/flannel" scp /opt/flannel/cert/flanneld*.pem k8s@${node_ip}:/opt/flannel/cert done
EOF
05-03.向etcd 写入集群Pod 网段信息
注意:本步骤只需执行一次。
[root@kube-master ~]# etcdctl \
–endpoints=”https://192.168.10.108:2379,https://192.168.10.109:2379,https://192.168.10.110:2379″ \
–ca-file=/opt/k8s/cert/ca.pem \
–cert-file=/opt/flannel/cert/flanneld.pem \
–key-file=/opt/flannel/cert/flanneld-key.pem \
set /atomic.io/network/config \'{“Network”:”10.30.0.0/16″,”SubnetLen”: 24, “Backend”: {“Type”: “vxlan”}}\’
{“Network”:”10.30.0.0/16″,”SubnetLen”: 24, “Backend”: {“Type”: “vxlan”}}
注:
- flanneld 当前版本 (v0.10.0) 不支持 etcd v3,故使用 etcd v2 API 写入配置 key 和网段数据;
- 写入的 Pod 网段 “Network” 必须是 /16 段地址,必须与kube-controller-manager 的 –cluster-cidr 参数值一致;
05-04.创建 flanneld 的 systemd unit 文件
[root@kube-master ~]# cat > /opt/flannel/flanneld.service << EOF
[Unit] Description=Flanneld overlay address etcd agent After=network.target After=network-online.target Wants=network-online.target After=etcd.service Before=docker.service [Service] Type=notify ExecStart=/opt/k8s/bin/flanneld \ -etcd-cafile=/opt/k8s/cert/ca.pem \ -etcd-certfile=/opt/flannel/cert/flanneld.pem \ -etcd-keyfile=/opt/flannel/cert/flanneld-key.pem \ -etcd-endpoints=https://192.168.10.108:2379,https://192.168.10.109:2379,https://192.168.10.110:2379 \ -etcd-prefix=/atomic.io/network \ -iface=eth1 ExecStartPost=/opt/k8s/bin/mk-docker-opts.sh -k DOCKER_NETWORK_OPTIONS -d /run/flannel/docker Restart=on-failure [Install] WantedBy=multi-user.target RequiredBy=docker.service
注:
- mk-docker-opts.sh 脚本将分配给 flanneld 的 Pod 子网网段信息写入/run/flannel/docker 文件,后续 docker 启动时使用这个文件中的环境变量配置 docker0 网桥;
- flanneld 使用系统缺省路由所在的接口与其它节点通信,对于有多个网络接口(如内网和公网)的节点,可以用 -iface 参数指定通信接口,如上面的 eth1 接口;
- flanneld 运行时需要 root 权限;
05-05.分发flanneld systemd unit 文件到所有节点,启动并检查flanneld 服务
[root@kube-master ~]# vim /opt/k8s/script/flanneld_service.sh
NODE_IPS=("192.168.10.108" "192.168.10.109" "192.168.10.110") for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" #分发 flanneld systemd unit 文件到所有节点 scp /opt/flannel/flanneld.service root@${node_ip}:/etc/systemd/system/ #启动 flanneld 服务 ssh root@${node_ip} "systemctl daemon-reload && systemctl enable flanneld && systemctl restart flanneld" #检查启动结果 ssh k8s@${node_ip} "systemctl status flanneld|grep Active" done
[root@kube-master ~]# chmod +x /opt/k8s/script/flanneld_service.sh && /opt/k8s/script/flanneld_service.sh
注:确保状态为 active (running) ,否则查看日志,确认原因:
$ journalctl -u flanneld
05-06.检查分配给各 flanneld 的 Pod 网段信息
05-06-01 查看集群 Pod 网段(/16)
[root@kube-master ~]# etcdctl \
–endpoints=”https://192.168.10.108:2379,https://192.168.10.109:2379,https://192.168.10.110:2379″ \
–ca-file=/opt/k8s/cert/ca.pem \
–cert-file=/opt/flannel/cert/flanneld.pem \
–key-file=/opt/flannel/cert/flanneld-key.pem \
get /atomic.io/network/config
输出:
{“Network”:”10.30.0.0/16″,”SubnetLen”: 24, “Backend”: {“Type”: “vxlan”}}
05-06-02 查看已分配的 Pod 子网段列表(/24)
[root@kube-master ~]# etcdctl \
–endpoints=”https://192.168.10.108:2379,https://192.168.10.109:2379,https://192.168.10.110:2379″ \
–ca-file=/opt/k8s/cert/ca.pem \
–cert-file=/opt/flannel/cert/flanneld.pem \
–key-file=/opt/flannel/cert/flanneld-key.pem \
ls /atomic.io/network/subnets
输出:
/atomic.io/network/subnets/10.30.22.0-24
/atomic.io/network/subnets/10.30.33.0-24
/atomic.io/network/subnets/10.30.44.0-24
05-06-03 查看某一 Pod 网段对应的节点 IP 和 flannel 接口地址
[root@kube-master ~]# etcdctl \
–endpoints=”https://192.168.10.108:2379,https://192.168.10.109:2379,https://192.168.10.110:2379″ \
–ca-file=/opt/k8s/cert/ca.pem \
–cert-file=/opt/flannel/cert/flanneld.pem \
–key-file=/opt/flannel/cert/flanneld-key.pem \
get /atomic.io/network/subnets/10.30.22.0-24
输出:
{“PublicIP”:”192.168.10.108″,”BackendType”:”vxlan”,”BackendData”:{“VtepMAC”:”fe:20:82:76:fc:25″}}
05-06-04 验证各节点能通过 Pod 网段互通
[root@kube-master ~]# vim /opt/k8s/script/ping_flanneld.sh
NODE_IPS=("192.168.10.108" "192.168.10.109" "192.168.10.110") for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" #在各节点上部署 flannel 后,检查是否创建了 flannel 接口(名称可能为 flannel0、flannel.0、flannel.1 等) ssh ${node_ip} "/usr/sbin/ip addr show flannel.1|grep -w inet" #在各节点上 ping 所有 flannel 接口 IP,确保能通 ssh ${node_ip} "ping -c 1 10.30.22.0" ssh ${node_ip} "ping -c 1 10.30.33.0" ssh ${node_ip} "ping -c 1 10.30.44.0" done
[root@kube-master ~]# chmod +x /opt/k8s/script/ping_flanneld.sh && /opt/k8s/script/ping_flanneld.sh
06.部署 master 节点
① kubernetes master 节点运行如下组件:
- kube-apiserver
- kube-scheduler
- kube-controller-manager
② kube-scheduler 和 kube-controller-manager 可以以集群模式运行,通过 leader 选举产生一个工作进程,其它进程处于阻塞模式。
③ 对于 kube-apiserver,可以运行多个实例(本文档是 3 实例),但对其它组件需要提供统一的访问地址,该地址需要高可用。本文档使用 keepalived 和 haproxy 实现 kube-apiserver VIP 高可用和负载均衡。
④ 因为对master做了keepalived高可用,所以3台服务器都有可能会升成master服务器(主master宕机,会有从升级为主);因此所有的master操作,在3个服务器上都要进行。
1、下载最新版本的二进制文件
从CHANGELOG 页面 下载 server tarball 文件。这2个包下载也需要科学上网。
[root@kube-master ~]# wget https://dl.k8s.io/v1.10.4/kubernetes-server-linux-amd64.tar.gz
[root@kube-master ~]# tar -xzvf kubernetes-server-linux-amd64.tar.gz
[root@kube-master ~]# cd kubernetes/
[root@kube-master kubernetes]# tar -xzvf kubernetes-src.tar.gz
2、将二进制文件拷贝到所有 master 节点
[root@kube-master ~]# vim /opt/k8s/script/scp_master.sh
NODE_IPS=("192.168.10.108" "192.168.10.109" "192.168.10.110") for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" scp /root/kubernetes/server/bin/* k8s@${node_ip}:/opt/k8s/bin/ ssh k8s@${node_ip} "chmod +x /opt/k8s/bin/*" done
[root@kube-master ~]# chmod +x /opt/k8s/script/scp_master.sh && /opt/k8s/script/scp_master.sh
06-01.部署高可用组件
① 本文档讲解使用 keepalived 和 haproxy 实现 kube-apiserver 高可用的步骤:
- keepalived 提供 kube-apiserver 对外服务的 VIP;
- haproxy 监听 VIP,后端连接所有 kube-apiserver 实例,提供健康检查和负载均衡功能;
② 运行 keepalived 和 haproxy 的节点称为 LB 节点。由于 keepalived 是一主多备运行模式,故至少两个 LB 节点。
③ 本文档复用 master 节点的三台机器,haproxy 监听的端口(8443) 需要与 kube-apiserver的端口 6443 不同,避免冲突。
④ keepalived 在运行过程中周期检查本机的 haproxy 进程状态,如果检测到 haproxy 进程异常,则触发重新选主的过程,VIP 将飘移到新选出来的主节点,从而实现 VIP 的高可用。
⑤ 所有组件(如 kubeclt、apiserver、controller-manager、scheduler 等)都通过 VIP 和haproxy 监听的 8443 端口访问 kube-apiserver 服务。
06-01-01 安装软件包,配置haproxy 配置文件
[root@kube-master ~]# yum install -y keepalived haproxy
[root@kube-master ~]# vim /etc/haproxy/haproxy.cfg
[root@kube-master ~]# cat /etc/haproxy/haproxy.cfg
global log /dev/log local0 log /dev/log local1 notice chroot /var/lib/haproxy stats socket /var/run/haproxy-admin.sock mode 660 level admin stats timeout 30s user haproxy group haproxy daemon nbproc 1 defaults log global timeout connect 5000 timeout client 10m timeout server 10m listen admin_stats bind 0.0.0.0:10080 mode http log 127.0.0.1 local0 err stats refresh 30s stats uri /status stats realm welcome login\ Haproxy stats auth along:along123 stats hide-version stats admin if TRUE listen kube-master bind 0.0.0.0:8443 mode tcp option tcplog balance source server 192.168.10.108 192.168.10.108:6443 check inter 2000 fall 2 rise 2 weight 1 server 192.168.10.109 192.168.10.109:6443 check inter 2000 fall 2 rise 2 weight 1 server 192.168.10.110 192.168.10.110:6443 check inter 2000 fall 2 rise 2 weight 1
注:
- haproxy 在 10080 端口输出 status 信息;
- haproxy 监听所有接口的 8443 端口,该端口与环境变量 ${KUBE_APISERVER} 指定的端口必须一致;
- server 字段列出所有kube-apiserver监听的 IP 和端口;
06-01-02 在其他服务器安装、下发haproxy 配置文件;并启动检查haproxy服务
[root@kube-master ~]# vim /opt/k8s/script/haproxy.sh
NODE_IPS=("192.168.10.108" "192.168.10.109" "192.168.10.110") for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" #安装haproxy ssh root@${node_ip} "yum install -y keepalived haproxy" #下发配置文件 scp /etc/haproxy/haproxy.cfg root@${node_ip}:/etc/haproxy #启动检查haproxy服务 ssh root@${node_ip} "systemctl restart haproxy" ssh root@${node_ip} "systemctl enable haproxy.service" ssh root@${node_ip} "systemctl status haproxy|grep Active" #检查 haproxy 是否监听6443 端口 ssh root@${node_ip} "netstat -lnpt|grep haproxy" done
[root@kube-master ~]# chmod +x /opt/k8s/script/haproxy.sh && /opt/k8s/script/haproxy.sh
确保输出类似于:
tcp 0 0 0.0.0.0:8443 0.0.0.0:* LISTEN 5351/haproxy
tcp 0 0 0.0.0.0:10080 0.0.0.0:* LISTEN 5351/haproxy
06-01-03 配置和启动 keepalived 服务
keepalived 是一主(master)多备(backup)运行模式,故有两种类型的配置文件。
master 配置文件只有一份,backup 配置文件视节点数目而定,对于本文档而言,规划如下:
- master: 192.168.10.108
- backup:192.168.10.109、192.168.10.110
(1)在192.168.10.108 master服务;配置文件:
[root@kube-master ~]# vim /etc/keepalived/keepalived.conf
global_defs { router_id keepalived_hap } vrrp_script check-haproxy { script "killall -0 haproxy" interval 5 weight -30 } vrrp_instance VI-kube-master { state MASTER priority 120 dont_track_primary interface eth1 virtual_router_id 68 advert_int 3 track_script { check-haproxy } virtual_ipaddress { 192.168.10.10 } }
注:
- 我的VIP 所在的接口nterface 为 eth1;根据自己的情况改变
- 使用 killall -0 haproxy 命令检查所在节点的 haproxy 进程是否正常。如果异常则将权重减少(-30),从而触发重新选主过程;
- router_id、virtual_router_id 用于标识属于该 HA 的 keepalived 实例,如果有多套keepalived HA,则必须各不相同;
(2)在两台backup 服务;配置文件:
[root@kube-node1 ~]# vim /etc/keepalived/keepalived.conf
global_defs { router_id keepalived_hap } vrrp_script check-haproxy { script "killall -0 haproxy" interval 5 weight -30 } vrrp_instance VI-kube-master { state BACKUP priority 110 #第2台从为100 dont_track_primary interface eth1 virtual_router_id 68 advert_int 3 track_script { check-haproxy } virtual_ipaddress { 192.168.10.10 } }
注:
- 我的VIP 所在的接口nterface 为 eth1;根据自己的情况改变
- 使用 killall -0 haproxy 命令检查所在节点的 haproxy 进程是否正常。如果异常则将权重减少(-30),从而触发重新选主过程;
- router_id、virtual_router_id 用于标识属于该 HA 的 keepalived 实例,如果有多套keepalived HA,则必须各不相同;
- priority 的值必须小于 master 的值;两个从的值也需要不一样;
(3)开启keepalived 服务
[root@kube-master ~]# vim /opt/k8s/script/keepalived.sh
NODE_IPS=("192.168.10.108" "192.168.10.109" "192.168.10.110") VIP="192.168.10.10" for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" ssh root@${node_ip} "systemctl restart keepalived && systemctl enable keepalived" ssh root@${node_ip} "systemctl status keepalived|grep Active" ssh ${node_ip} "ping -c 1 ${VIP}" done
[root@kube-master ~]# chmod +x /opt/k8s/script/keepalived.sh && /opt/k8s/script/keepalived.sh
(4)在master服务器上能看到eth1网卡上已经有192.168.10.10 VIP了
[root@kube-master ~]# ip a show eth1
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
link/ether 00:50:56:22:1b:39 brd ff:ff:ff:ff:ff:ff
inet 192.168.10.108/24 brd 192.168.10.255 scope global eth1
valid_lft forever preferred_lft forever
inet 192.168.10.10/32 scope global eth1
valid_lft forever preferred_lft forever
06-01-04 查看 haproxy 状态页面
浏览器访问192.168.10.10:10080/status 地址
① 输入用户名、密码;在配置文件中自己定义的
② 查看 haproxy 状态页面
06-02.部署 kube-apiserver 组件
本文档讲解使用 keepalived 和 haproxy 部署一个 3 节点高可用 master 集群的步骤,对应的 LB VIP 为环境变量 ${MASTER_VIP}。
准备工作:下载最新版本的二进制文件、安装和配置 flanneld
06-02-01 创建 kubernetes 证书和私钥
(1)创建证书签名请求:
[root@kube-master ~]# cd /opt/k8s/cert/
[root@kube-master cert]# cat > kubernetes-csr.json <<EOF
{ "CN": "kubernetes", "hosts": [ "127.0.0.1", "192.168.10.108", "192.168.10.109", "192.168.10.110", "192.168.10.10", "10.96.0.1", "kubernetes", "kubernetes.default", "kubernetes.default.svc", "kubernetes.default.svc.cluster", "kubernetes.default.svc.cluster.local" ], "key": { "algo": "rsa", "size": 2048 }, "names": [ { "C": "CN", "ST": "BeiJing", "L": "BeiJing", "O": "k8s", "OU": "4Paradigm" } ] }
EOF
注:
- hosts 字段指定授权使用该证书的 IP 或域名列表,这里列出了 VIP 、apiserver节点 IP、kubernetes 服务 IP 和域名;
- 域名最后字符不能是 . (如不能为kubernetes.default.svc.cluster.local. ),否则解析时失败,提示: x509:cannot parse dnsName “kubernetes.default.svc.cluster.local.” ;
- 如果使用非 cluster.local 域名,如 opsnull.com ,则需要修改域名列表中的最后两个域名为: kubernetes.default.svc.opsnull 、 kubernetes.default.svc.opsnull.com
- kubernetes 服务 IP 是 apiserver 自动创建的,一般是 –service-cluster-ip-range 参数指定的网段的第一个IP,后续可以通过如下命令获取:
[root@kube-master ~]# kubectl get svc kubernetes
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 4d
(2)生成证书和私钥
[root@kube-master cert]# cfssl gencert -ca=/opt/k8s/cert/ca.pem \
-ca-key=/opt/k8s/cert/ca-key.pem \
-config=/opt/k8s/cert/ca-config.json \
-profile=kubernetes kubernetes-csr.json | cfssljson -bare kubernetes
[root@kube-master cert]# ls kubernetes*
kubernetes.csr kubernetes-csr.json kubernetes-key.pem kubernetes.pem
06-02-02 创建加密配置文件
① 产生一个用来加密Etcd 的 Key:
[root@kube-master ~]# head -c 32 /dev/urandom | base64
uS+YQXYoi1nxvI1pfSc2wRt64h/Iu5/4GxCuSvN+/jI=
注意:每台master节点需要用一样的 Key
② 使用这个加密的key,创建加密配置文件
[root@kube-master cert]# vim encryption-config.yaml
kind: EncryptionConfig apiVersion: v1 resources: - resources: - secrets providers: - aescbc: keys: - name: key1 secret: uS+YQXYoi1nxvI1pfSc2wRt64h/Iu5/4GxCuSvN+/jI= - identity: {}
06-02-03 将生成的证书和私钥文件、加密配置文件拷贝到master 节点的/opt/k8s目录下
[root@kube-master cert]# vim /opt/k8s/script/scp_apiserver.sh
NODE_IPS=("192.168.10.108" "192.168.10.109" "192.168.10.110") for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" ssh root@${node_ip} "mkdir -p /opt/k8s/cert/ && sudo chown -R k8s /opt/k8s/cert/" scp /opt/k8s/cert/kubernetes*.pem k8s@${node_ip}:/opt/k8s/cert/ scp /opt/k8s/cert/encryption-config.yaml root@${node_ip}:/opt/k8s/ done
[root@kube-master cert]# chmod +x /opt/k8s/script/scp_apiserver.sh && /opt/k8s/script/scp_apiserver.sh
06-02-04 创建 kube-apiserver systemd unit 模板文件
cat > /opt/apiserver/kube-apiserver.service.template <<EOF
[Unit] Description=Kubernetes API Server Documentation=https://github.com/GoogleCloudPlatform/kubernetes After=network.target [Service] ExecStart=/opt/k8s/bin/kube-apiserver \ --enable-admission-plugins=Initializers,NamespaceLifecycle,NodeRestriction,LimitRanger,ServiceAccount,DefaultStorageClass,ResourceQuota \ --anonymous-auth=false \ --experimental-encryption-provider-config=/opt/k8s/encryption-config.yaml \ --advertise-address=##NODE_IP## \ --bind-address=##NODE_IP## \ --insecure-port=0 \ --authorization-mode=Node,RBAC \ --runtime-config=api/all \ --enable-bootstrap-token-auth \ --service-cluster-ip-range=10.96.0.0/16 \ --service-node-port-range=1-32767 \ --tls-cert-file=/opt/k8s/cert/kubernetes.pem \ --tls-private-key-file=/opt/k8s/cert/kubernetes-key.pem \ --client-ca-file=/opt/k8s/cert/ca.pem \ --kubelet-client-certificate=/opt/k8s/cert/kubernetes.pem \ --kubelet-client-key=/opt/k8s/cert/kubernetes-key.pem \ --service-account-key-file=/opt/k8s/cert/ca-key.pem \ --etcd-cafile=/opt/k8s/cert/ca.pem \ --etcd-certfile=/opt/k8s/cert/kubernetes.pem \ --etcd-keyfile=/opt/k8s/cert/kubernetes-key.pem \ --etcd-servers=https://192.168.10.108:2379,https://192.168.10.109:2379,https://192.168.10.110:2379 \ --enable-swagger-ui=true \ --allow-privileged=true \ --apiserver-count=3 \ --audit-log-maxage=30 \ --audit-log-maxbackup=3 \ --audit-log-maxsize=100 \ --audit-log-path=/var/log/kube-apiserver-audit.log \ --event-ttl=1h \ --alsologtostderr=true \ --logtostderr=false \ --log-dir=/opt/log/kubernetes \ --v=2 Restart=on-failure RestartSec=5 Type=notify User=k8s LimitNOFILE=65536 [Install] WantedBy=multi-user.target
EOF
注:
- –experimental-encryption-provider-config :启用加密特性;
- –authorization-mode=Node,RBAC : 开启 Node 和 RBAC 授权模式,拒绝未授权的请求;
- –enable-admission-plugins :启用 ServiceAccount 和NodeRestriction ;
- –service-account-key-file :签名 ServiceAccount Token 的公钥文件,kube-controller-manager 的 –service-account-private-key-file 指定私钥文件,两者配对使用;
- –tls-*-file :指定 apiserver 使用的证书、私钥和 CA 文件。 –client-ca-file 用于验证 client (kue-controller-manager、kube-scheduler、kubelet、kube-proxy 等)请求所带的证书;
- –kubelet-client-certificate 、 –kubelet-client-key :如果指定,则使用 https 访问 kubelet APIs;需要为证书对应的用户(上面 kubernetes*.pem 证书的用户为 kubernetes) 用户定义 RBAC 规则,否则访问 kubelet API 时提示未授权;
- –bind-address : 不能为 127.0.0.1 ,否则外界不能访问它的安全端口6443;
- –insecure-port=0 :关闭监听非安全端口(8080);
- –service-cluster-ip-range : 指定 Service Cluster IP 地址段;
- –service-node-port-range : 指定 NodePort 的端口范围;
- –runtime-config=api/all=true : 启用所有版本的 APIs,如autoscaling/v2alpha1;
- –enable-bootstrap-token-auth :启用 kubelet bootstrap 的 token 认证;
- –apiserver-count=3 :指定集群运行模式,多台 kube-apiserver 会通过 leader选举产生一个工作节点,其它节点处于阻塞状态;
- User=k8s :使用 k8s 账户运行;
06-02-05 为各节点创建和分发 kube-apiserver systemd unit文件;启动检查 kube-apiserver 服务
[root@kube-master ~]# vim /opt/k8s/script/apiserver_service.sh
NODE_IPS=("192.168.10.108" "192.168.10.109" "192.168.10.110") #替换模板文件中的变量,为各节点创建 systemd unit 文件 for (( i=0; i < 3; i++ ));do sed "s/##NODE_IP##/${NODE_IPS[i]}/" /opt/apiserver/kube-apiserver.service.template > /opt/apiserver/kube-apiserver-${NODE_IPS[i]}.service done #启动并检查 kube-apiserver 服务 for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" ssh root@${node_ip} "mkdir -p /opt/log/kubernetes && chown -R k8s /opt/log/kubernetes" scp /opt/apiserver/kube-apiserver-${node_ip}.service root@${node_ip}:/etc/systemd/system/kube-apiserver.service ssh root@${node_ip} "systemctl daemon-reload && systemctl enable kube-apiserver && systemctl restart kube-apiserver" ssh root@${node_ip} "systemctl status kube-apiserver |grep \'Active:\'" done
[root@kube-master ~]# chmod +x /opt/k8s/script/apiserver_service.sh && /opt/k8s/script/apiserver_service.sh
确保状态为 active (running) ,否则到 master 节点查看日志,确认原因:
journalctl -u kube-apiserver
06-02-06 打印 kube-apiserver 写入 etcd 的数据
[root@kube-master ~]# ETCDCTL_API=3 etcdctl \
–endpoints=”https://192.168.10.108:2379,https://192.168.10.109:2379,https://192.168.10.110:2379″ \
–cacert=/opt/k8s/cert/ca.pem \
–cert=/opt/etcd/cert/etcd.pem \
–key=/opt/etcd/cert/etcd-key.pem \
get /registry/ –prefix –keys-only
06-02-07 检查集群信息
[root@kube-master ~]# kubectl cluster-info
Kubernetes master is running at https://192.168.10.108:6443
To further debug and diagnose cluster problems, use \’kubectl cluster-info dump\’.
[root@kube-master ~]# kubectl get all –all-namespaces
NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
default service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 16h
[root@kube-master ~]# kubectl get componentstatuses
NAME STATUS MESSAGE ERROR
scheduler Unhealthy Get http://127.0.0.1:10251/healthz: dial tcp 127.0.0.1:10251: getsockopt: connection refused
controller-manager Unhealthy Get http://127.0.0.1:10252/healthz: dial tcp 127.0.0.1:10252: getsockopt: connection refused
etcd-1 Healthy {“health”:”true”}
etcd-2 Healthy {“health”:”true”}
etcd-0 Healthy {“health”:”true”}
注意:
① 如果执行 kubectl 命令式时输出如下错误信息,则说明使用的 ~/.kube/config文件不对,请切换到正确的账户后再执行该命令:
The connection to the server localhost:8080 was refused – did you specify the right host or port?
② 执行 kubectl get componentstatuses 命令时,apiserver 默认向 127.0.0.1 发送请求。当controller-manager、scheduler 以集群模式运行时,有可能和 kube-apiserver 不在一台机器上,这时 controller-manager 或 scheduler 的状态为Unhealthy,但实际上它们工作正常。
06-02-08 检查 kube-apiserver 监听的端口
[root@kube-master ~]# ss -nutlp |grep apiserver
tcp LISTEN 0 128 192.168.10.108:6443 *:* users:((“kubeapiserver”,pid=929,fd=5))
- 6443: 接收 https 请求的安全端口,对所有请求做认证和授权;
- 由于关闭了非安全端口,故没有监听 8080;
06-02-09 授予 kubernetes 证书访问 kubelet API 的权限
在执行 kubectl exec、run、logs 等命令时,apiserver 会转发到 kubelet。这里定义RBAC 规则,授权 apiserver 调用 kubelet API。
[root@kube-master ~]# kubectl create clusterrolebinding kube-apiserver:kubelet-apis –clusterrole=system:kubelet-api-admin –user kubernetes
clusterrolebinding.rbac.authorization.k8s.io “kube-apiserver:kubelet-apis” created
06-03.部署高可用kube-controller-manager 集群
本文档介绍部署高可用 kube-controller-manager 集群的步骤。
该集群包含 3 个节点,启动后将通过竞争选举机制产生一个 leader 节点,其它节点为阻塞状态。当 leader 节点不可用后,剩余节点将再次进行选举产生新的 leader 节点,从而保证服务的可用性。
为保证通信安全,本文档先生成 x509 证书和私钥,kube-controller-manager 在如下两种情况下使用该证书:
① 与 kube-apiserver 的安全端口通信时;
② 在安全端口(https,10252) 输出 prometheus 格式的 metrics;
准备工作:下载最新版本的二进制文件、安装和配置 flanneld
06-03-01 创建 kube-controller-manager 证书和私钥
创建证书签名请求:
[root@kube-master ~]# cd /opt/k8s/cert/
[root@kube-master cert]# cat > kube-controller-manager-csr.json <<EOF
{ "CN": "system:kube-controller-manager", "key": { "algo": "rsa", "size": 2048 }, "hosts": [ "127.0.0.1", "192.168.10.108", "192.168.10.109", "192.168.10.110" ], "names": [ { "C": "CN", "ST": "BeiJing", "L": "BeiJing", "O": "system:kube-controller-manager", "OU": "4Paradigm" } ] }
EOF
注:
- hosts 列表包含所有 kube-controller-manager 节点 IP;
- CN 为 system:kube-controller-manager、O 为 system:kube-controller-manager,kubernetes 内置的 ClusterRoleBindings system:kube-controller-manager 赋予kube-controller-manager 工作所需的权限。
06-03-02 生成证书和私钥
[root@kube-master cert]# cfssl gencert -ca=/opt/k8s/cert/ca.pem \
-ca-key=/opt/k8s/cert/ca-key.pem \
-config=/opt/k8s/cert/ca-config.json \
-profile=kubernetes kube-controller-manager-csr.json | cfssljson_linux-amd64 -bare kube-controller-manager
[root@kube-master cert]# ls *controller-manager*
kube-controller-manager.csr kube-controller-manager-key.pem
kube-controller-manager-csr.json kube-controller-manager.pem
06-03-03 创建kubeconfig 文件
kubeconfig 文件包含访问 apiserver 的所有信息,如 apiserver 地址、CA 证书和自身使用的证书;
① 执行命令,生产kube-controller-manager.kubeconfig文件
[root@kube-master ~]# kubectl config set-cluster kubernetes \
–certificate-authority=/opt/k8s/cert/ca.pem \
–embed-certs=true \
–server=https://192.168.10.10:8443 \
–kubeconfig=/root/.kube/kube-controller-manager.kubeconfig
[root@kube-master ~]# kubectl config set-credentials system:kube-controller-manager \
–client-certificate=/opt/k8s/cert/kube-controller-manager.pem \
–client-key=/opt/k8s/cert/kube-controller-manager-key.pem \
–embed-certs=true \
–kubeconfig=/root/.kube/kube-controller-manager.kubeconfig
[root@kube-master ~]# kubectl config set-context system:kube-controller-manager@kubernetes \
–cluster=kubernetes \
–user=system:kube-controller-manager \
–kubeconfig=/root/.kube/kube-controller-manager.kubeconfig
[root@kube-master ~]# kubectl config use-context system:kube-controller-manager@kubernetes –kubeconfig=/root/.kube/kube-controller-manager.kubeconfig
② 验证kube-controller-manager.kubeconfig文件
[root@kube-master cert]# ls /root/.kube/kube-controller-manager.kubeconfig
/root/.kube/kube-controller-manager.kubeconfig
[root@kube-master ~]# kubectl config view –kubeconfig=/root/.kube/kube-controller-manager.kubeconfig
apiVersion: v1 clusters: - cluster: certificate-authority-data: REDACTED server: https://192.168.10.10:8443 name: kubernetes contexts: - context: cluster: kubernetes user: system:kube-controller-manager name: system:kube-controller-manager@kubernetes current-context: system:kube-controller-manager@kubernetes kind: Config preferences: {} users: - name: system:kube-controller-manager user: client-certificate-data: REDACTED client-key-data: REDACTED
06-03-04 分发生成的证书和私钥、kubeconfig 到所有 master 节点
[root@kube-master ~]# vim /opt/k8s/script/scp_controller_manager.sh
NODE_IPS=("192.168.10.108" "192.168.10.109" "192.168.10.110") for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" ssh root@${node_ip} "chown k8s /opt/k8s/cert/*" scp /opt/k8s/cert/kube-controller-manager*.pem k8s@${node_ip}:/opt/k8s/cert/ scp /root/.kube/kube-controller-manager.kubeconfig k8s@${node_ip}:/opt/k8s/ done
[root@kube-master ~]# chmod +x /opt/k8s/script/scp_controller_manager.sh && /opt/k8s/script/scp_controller_manager.sh
06-03-05 创建和分发 kube-controller-manager systemd unit 文件
[root@kube-master ~]# mkdir /opt/controller_manager
[root@kube-master ~]# cd /opt/controller_manager
[root@kube-master controller_manager]# cat > kube-controller-manager.service <<EOF
[Unit] Description=Kubernetes Controller Manager Documentation=https://github.com/GoogleCloudPlatform/kubernetes [Service] ExecStart=/opt/k8s/bin/kube-controller-manager \ --port=0 \ --secure-port=10252 \ --bind-address=127.0.0.1 \ --kubeconfig=/opt/k8s/kube-controller-manager.kubeconfig \ --service-cluster-ip-range=10.96.0.0/16 \ --cluster-name=kubernetes \ --cluster-signing-cert-file=/opt/k8s/cert/ca.pem \ --cluster-signing-key-file=/opt/k8s/cert/ca-key.pem \ --experimental-cluster-signing-duration=8760h \ --root-ca-file=/opt/k8s/cert/ca.pem \ --service-account-private-key-file=/opt/k8s/cert/ca-key.pem \ --leader-elect=true \ --feature-gates=RotateKubeletServerCertificate=true \ --controllers=*,bootstrapsigner,tokencleaner \ --horizontal-pod-autoscaler-use-rest-clients=true \ --horizontal-pod-autoscaler-sync-period=10s \ --tls-cert-file=/opt/k8s/cert/kube-controller-manager.pem \ --tls-private-key-file=/opt/k8s/cert/kube-controller-manager-key.pem \ --use-service-account-credentials=true \ --alsologtostderr=true \ --logtostderr=false \ --log-dir=/var/log/kubernetes \ --v=2 Restart=on Restart=on-failure RestartSec=5 User=k8s [Install] WantedBy=multi-user.target
注:
- –port=0:关闭监听 http /metrics 的请求,同时 –address 参数无效,–bind-address 参数有效;
- –secure-port=10252、–bind-address=0.0.0.0: 在所有网络接口监听 10252 端口的 https /metrics 请求;
- –kubeconfig:指定 kubeconfig 文件路径,kube-controller-manager 使用它连接和验证 kube-apiserver;
- –cluster-signing-*-file:签名 TLS Bootstrap 创建的证书;
- –experimental-cluster-signing-duration:指定 TLS Bootstrap 证书的有效期;
- –root-ca-file:放置到容器 ServiceAccount 中的 CA 证书,用来对 kube-apiserver 的证书进行校验;
- –service-account-private-key-file:签名 ServiceAccount 中 Token 的私钥文件,必须和 kube-apiserver 的 –service-account-key-file 指定的公钥文件配对使用;
- –service-cluster-ip-range :指定 Service Cluster IP 网段,必须和 kube-apiserver 中的同名参数一致;
- –leader-elect=true:集群运行模式,启用选举功能;被选为 leader 的节点负责处理工作,其它节点为阻塞状态;
- –feature-gates=RotateKubeletServerCertificate=true:开启 kublet server 证书的自动更新特性;
- –controllers=*,bootstrapsigner,tokencleaner:启用的控制器列表,tokencleaner 用于自动清理过期的 Bootstrap token;
- –horizontal-pod-autoscaler-*:custom metrics 相关参数,支持 autoscaling/v2alpha1;
- –tls-cert-file、–tls-private-key-file:使用 https 输出 metrics 时使用的 Server 证书和秘钥;
- –use-service-account-credentials=true:
- User=k8s:使用 k8s 账户运行;
kube-controller-manager 不对请求 https metrics 的 Client 证书进行校验,故不需要指定 –tls-ca-file 参数,而且该参数已被淘汰。
06-03-06 kube-controller-manager 的权限
ClusteRole: system:kube-controller-manager 的权限很小,只能创建 secret、serviceaccount 等资源对象,各 controller 的权限分散到 ClusterRole system:controller:XXX 中。
需要在 kube-controller-manager 的启动参数中添加 –use-service-account-credentials=true 参数,这样 main controller 会为各 controller 创建对应的 ServiceAccount XXX-controller。
内置的 ClusterRoleBinding system:controller:XXX 将赋予各 XXX-controller ServiceAccount 对应的 ClusterRole system:controller:XXX 权限。
06-03-07 分发systemd unit 文件到所有master 节点;启动检查 kube-controller-manager 服务
[root@kube-master ~]# vim /opt/k8s/script/controller_manager.sh
NODE_IPS=("192.168.10.108" "192.168.10.109" "192.168.10.110") for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" scp /opt/controller_manager/kube-controller-manager.service root@${node_ip}:/etc/systemd/system/ ssh root@${node_ip} "mkdir -p /opt/log/kubernetes && chown -R k8s /opt/log/kubernetes" ssh root@${node_ip} "systemctl daemon-reload && systemctl enable kube-controller-manager && systemctl start kube-controller-manager" done for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" ssh k8s@${node_ip} "systemctl status kube-controller-manager|grep Active" done
[root@kube-master ~]# chmod +x /opt/k8s/script/controller_manager.sh && /opt/k8s/script/controller_manager.sh
06-03-08 查看输出的 metric
注意:以下命令在 kube-controller-manager 节点上执行。
[root@kube-master ~]# ss -nutlp |grep kube-controll
tcp LISTEN 0 128 127.0.0.1:10252 *:* users:((“kube-controller”,pid=6532,fd=5))
[root@kube-master ~]# curl -s –cacert /opt/k8s/cert/ca.pem https://127.0.0.1:10252/metrics |head
# HELP ClusterRoleAggregator_adds Total number of adds handled by workqueue: ClusterRoleAggregator
# TYPE ClusterRoleAggregator_adds counter
ClusterRoleAggregator_adds 6
# HELP ClusterRoleAggregator_depth Current depth of workqueue: ClusterRoleAggregator
# TYPE ClusterRoleAggregator_depth gauge
ClusterRoleAggregator_depth 0
# HELP ClusterRoleAggregator_queue_latency How long an item stays in workqueueClusterRoleAggregator before being requested.
# TYPE ClusterRoleAggregator_queue_latency summary
ClusterRoleAggregator_queue_latency{quantile=”0.5″} 431
ClusterRoleAggregator_queue_latency{quantile=”0.9″} 85089
注:curl –cacert CA 证书用来验证 kube-controller-manager https server 证书;
06-03-09 测试 kube-controller-manager 集群的高可用
1、停掉一个或两个节点的 kube-controller-manager 服务,观察其它节点的日志,看是否获取了 leader 权限。
2、查看当前的 leader
[root@kube-master ~]# kubectl get endpoints kube-controller-manager –namespace=kube-system -o yaml
apiVersion: v1
kind: Endpoints
metadata:
annotations:
control-plane.alpha.kubernetes.io/leader: \'{“holderIdentity”:”kube-master_53bc08b7-f69d-11e8-9e79-0050563ab62b”,”leaseDurationSeconds”:15,”acquireTime”:”2018-12-03T01:48:18Z”,”renewTime”:”2018-12-03T01:59:15Z”,”leaderTransitions”:5}\’
creationTimestamp: 2018-11-29T03:12:14Z
name: kube-controller-manager
namespace: kube-system
resourceVersion: “56075”
selfLink: /api/v1/namespaces/kube-system/endpoints/kube-controller-manager
uid: 91e64a51-f384-11e8-a392-0050563ab62b
可见,当前的 leader 为 kube-node1 节点。(本来是在kube-master节点)
06-04.部署高可用 kube-scheduler 集群
本文档介绍部署高可用 kube-scheduler 集群的步骤。
该集群包含 3 个节点,启动后将通过竞争选举机制产生一个 leader 节点,其它节点为阻塞状态。当 leader 节点不可用后,剩余节点将再次进行选举产生新的 leader 节点,从而保证服务的可用性。
为保证通信安全,本文档先生成 x509 证书和私钥,kube-scheduler 在如下两种情况下使用该证书:
① 与 kube-apiserver 的安全端口通信;
② 在安全端口(https,10251) 输出 prometheus 格式的 metrics;
准备工作:下载最新版本的二进制文件、安装和配置 flanneld
06-04-01 创建 kube-scheduler 证书和私钥
创建证书签名请求:
[root@kube-master ~]# cd /opt/k8s/cert/
[root@kube-master cert]# cat > kube-scheduler-csr.json <<EOF
{ "CN": "system:kube-scheduler", "hosts": [ "127.0.0.1", "192.168.10.108", "192.168.10.109", "192.168.10.110" ], "key": { "algo": "rsa", "size": 2048 }, "names": [ { "C": "CN", "ST": "BeiJing", "L": "BeiJing", "O": "system:kube-scheduler", "OU": "4Paradigm" } ] }
EOF
注:
- hosts 列表包含所有 kube-scheduler 节点 IP;
- CN 为 system:kube-scheduler、O 为 system:kube-scheduler,kubernetes 内置的 ClusterRoleBindings system:kube-scheduler 将赋予 kube-scheduler 工作所需的权限。
06-04-02 生成证书和私钥
[root@kube-master cert]# cfssl gencert -ca=/opt/k8s/cert/ca.pem \
-ca-key=/opt/k8s/cert/ca-key.pem \
-config=/opt/k8s/cert/ca-config.json \ -profile=kubernetes kube-scheduler-csr.json | cfssljson_linux-amd64 -bare kube-scheduler
[root@kube-master cert]# ls *scheduler*
kube-scheduler.csr kube-scheduler-csr.json kube-scheduler-key.pem kube-scheduler.pem
06-04-03 创建kubeconfig 文件
kubeconfig 文件包含访问 apiserver 的所有信息,如 apiserver 地址、CA 证书和自身使用的证书;
① 执行命令,生产kube-scheduler.kubeconfig文件
[root@kube-master ~]# kubectl config set-cluster kubernetes \
–certificate-authority=/opt/k8s/cert/ca.pem \
–embed-certs=true \
–server=https://192.168.10.10:8443 \
–kubeconfig=/root/.kube/kube-scheduler.kubeconfig
[root@kube-master ~]# kubectl config set-credentials system:kube-scheduler \
–client-certificate=/opt/k8s/cert/kube-scheduler.pem \
–client-key=/opt/k8s/cert/kube-scheduler-key.pem \
–embed-certs=true \
–kubeconfig=/root/.kube/kube-scheduler.kubeconfig
[root@kube-master ~]# kubectl config set-context system:kube-scheduler@kubernetes \
–cluster=kubernetes \
–user=system:kube-scheduler \
–kubeconfig=/root/.kube/kube-scheduler.kubeconfig
[root@kube-master ~]# kubectl config use-context system:kube-scheduler@kubernetes –kubeconfig=/root/.kube/kube-scheduler.kubeconfig
② 验证kube-controller-manager.kubeconfig文件
[root@kube-master cert]# ls /root/.kube/kube-scheduler.kubeconfig
/root/.kube/kube-scheduler.kubeconfig
[root@kube-master ~]# kubectl config view –kubeconfig=/root/.kube/kube-scheduler.kubeconfig
apiVersion: v1 clusters: - cluster: certificate-authority-data: REDACTED server: https://192.168.10.100:8443 name: kubernetes contexts: - context: cluster: kubernetes user: system:kube-scheduler name: system:kube-scheduler@kubernetes current-context: system:kube-scheduler@kubernetes kind: Config preferences: {} users: - name: system:kube-scheduler user: client-certificate-data: REDACTED client-key-data: REDACTED
06-04-04 分发生成的证书和私钥、kubeconfig 到所有 master 节点
[root@kube-master ~]# vim /opt/k8s/script/scp_scheduler.sh
NODE_IPS=("192.168.10.108" "192.168.10.109" "192.168.10.110") for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" ssh root@${node_ip} "chown k8s /opt/k8s/cert/*" scp /opt/k8s/cert/kube-scheduler*.pem k8s@${node_ip}:/opt/k8s/cert/ scp /root/.kube/kube-scheduler.kubeconfig k8s@${node_ip}:/opt/k8s/ done
[root@kube-master ~]# chmod +x /opt/k8s/script/scp_scheduler.sh && /opt/k8s/script/scp_scheduler.sh
06-04-05 创建kube-scheduler systemd unit 文件
[root@kube-master ~]# mkdir /opt/scheduler
[root@kube-master ~]# cd /opt/scheduler
[root@kube-master scheduler]# cat > kube-scheduler.service <<EOF
[Unit] Description=Kubernetes Scheduler Documentation=https://github.com/GoogleCloudPlatform/kubernetes [Service] ExecStart=/opt/k8s/bin/kube-scheduler \\ --address=127.0.0.1 \\ --kubeconfig=/etc/kubernetes/kube-scheduler.kubeconfig \\ --leader-elect=true \\ --alsologtostderr=true \\ --logtostderr=false \\ --log-dir=/var/log/kubernetes \\ --v=2 Restart=on-failure RestartSec=5 User=k8s [Install] WantedBy=multi-user.target
EOF
注:
- –address:在 127.0.0.1:10251 端口接收 http /metrics 请求;kube-scheduler 目前还不支持接收 https 请求;
- –kubeconfig:指定 kubeconfig 文件路径,kube-scheduler 使用它连接和验证 kube-apiserver;
- –leader-elect=true:集群运行模式,启用选举功能;被选为 leader 的节点负责处理工作,其它节点为阻塞状态;
- User=k8s:使用 k8s 账户运行;
06-04-06 分发systemd unit 文件到所有master 节点;启动检查kube-scheduler 服务
[root@kube-master scheduler]# vim /opt/k8s/script/scheduler.sh
NODE_IPS=("192.168.10.108" "192.168.10.109" "192.168.10.110") for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" scp /opt/scheduler/kube-scheduler.service root@${node_ip}:/etc/systemd/system/ ssh root@${node_ip} "mkdir -p /opt/log/kubernetes && chown -R k8s /opt/log/kubernetes" ssh root@${node_ip} "systemctl daemon-reload && systemctl enable kube-scheduler && systemctl start kube-scheduler" done for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" ssh k8s@${node_ip} "systemctl status kube-scheduler|grep Active" done
[root@kube-master scheduler]# chmod +x /opt/k8s/script/scheduler.sh && /opt/k8s/script/scheduler.sh
确保状态为 active (running),否则查看日志,确认原因:
journalctl -u kube-scheduler
06-04-07 查看输出的 metric
注意:以下命令在 kube-scheduler 节点上执行。
kube-scheduler 监听 10251 端口,接收 http 请求:
[root@kube-master ~]# ss -nutlp |grep kube-scheduler
tcp LISTEN 0 128 127.0.0.1:10251 *:* users:((“kube-scheduler”,pid=14968,fd=8))
[root@kube-master ~]# curl -s http://127.0.0.1:10251/metrics |head
# HELP apiserver_audit_event_total Counter of audit events generated and sent to the audit backend.
# TYPE apiserver_audit_event_total counter
apiserver_audit_event_total 0
# HELP go_gc_duration_seconds A summary of the GC invocation durations.
# TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile=”0″} 3.6554e-05
go_gc_duration_seconds{quantile=”0.25″} 0.000133804
go_gc_duration_seconds{quantile=”0.5″} 0.000203523
go_gc_duration_seconds{quantile=”0.75″} 0.000683624
go_gc_duration_seconds{quantile=”1″} 0.001188571
06-04-08 测试 kube-scheduler 集群的高可用
1、随便找一个或两个 master 节点,停掉 kube-scheduler 服务,看其它节点是否获取了 leader 权限(systemd 日志)。
2、查看当前的 leader
[root@kube-master ~]# kubectl get endpoints kube-scheduler –namespace=kube-system -o yaml
apiVersion: v1
kind: Endpoints
metadata:
annotations:
control-plane.alpha.kubernetes.io/leader: \'{“holderIdentity”:”kube-node1_531fab4b-f69d-11e8-ba0a-00505631d257″,”leaseDurationSeconds”:15,”acquireTime”:”2018-12-03T01:48:23Z”,”renewTime”:”2018-12-03T02:02:28Z”,”leaderTransitions”:4}\’
creationTimestamp: 2018-11-29T05:50:35Z
name: kube-scheduler
namespace: kube-system
resourceVersion: “56324”
selfLink: /api/v1/namespaces/kube-system/endpoints/kube-scheduler
uid: b1435e86-f39a-11e8-a392-0050563ab62b
可见,当前的 leader 为 kube-node2 节点。(本来是在kube-master节点)
07.部署 worker 节点
kubernetes work 节点运行如下组件:
- docker
- kubelet
- kube-proxy
1、安装和配置 flanneld
参考 05.部署 flannel 网络
2、安装依赖包
CentOS:
$ yum install -y epel-release
$ yum install -y conntrack ipvsadm ipset jq iptables curl sysstat libseccomp && /usr/sbin/modprobe ip_vs
Ubuntu:
$ apt-get install -y conntrack ipvsadm ipset jq iptables curl sysstat libseccomp && /usr/sbin/modprobe ip_vs
07-01.部署 docker 组件
docker 是容器的运行环境,管理它的生命周期。kubelet 通过 Container Runtime Interface (CRI) 与 docker 进行交互。
07-01-01 下载docker 二进制文件
到 https://download.docker.com/linux/static/stable/x86_64/ 页面下载最新发布包:
wget https://download.docker.com/linux/static/stable/x86_64/docker-18.03.1-ce.tgz tar -xvf docker-18.03.1-ce.tgz
07-01-02 创建和分发 systemd unit 文件
[root@kube-master ~]# mkdir /opt/docker
[root@kube-master ~]# cd /opt/
[root@kube-master docker]# cat > docker.service << “EOF”
[Unit] Description=Docker Application Container Engine Documentation=http://docs.docker.io [Service] Environment="PATH=/opt/k8s/bin:/bin:/sbin:/usr/bin:/usr/sbin" EnvironmentFile=-/run/flannel/docker ExecStart=/opt/k8s/bin/dockerd --log-level=error $DOCKER_NETWORK_OPTIONS ExecReload=/bin/kill -s HUP $MAINPID Restart=on-failure RestartSec=5 LimitNOFILE=infinity LimitNPROC=infinity LimitCORE=infinity Delegate=yes KillMode=process [Install] WantedBy=multi-user.target
EOF
- EOF 前后有双引号,这样 bash 不会替换文档中的变量,如 $DOCKER_NETWORK_OPTIONS;
- dockerd 运行时会调用其它 docker 命令,如 docker-proxy,所以需要将 docker 命令所在的目录加到 PATH 环境变量中;
- flanneld 启动时将网络配置写入 /run/flannel/docker 文件中,dockerd 启动前读取该文件中的环境变量 DOCKER_NETWORK_OPTIONS ,然后设置 docker0 网桥网段;
- 如果指定了多个 EnvironmentFile 选项,则必须将 /run/flannel/docker 放在最后(确保 docker0 使用 flanneld 生成的 bip 参数);
- docker 需要以 root 用于运行;
- docker 从 1.13 版本开始,可能将 iptables FORWARD chain的默认策略设置为DROP,从而导致 ping 其它 Node 上的 Pod IP 失败,遇到这种情况时,需要手动设置策略为 ACCEPT:$ sudo iptables -P FORWARD ACCEPT;并且把以下命令写入 /etc/rc.local 文件中,防止节点重启iptables FORWARD chain的默认策略又还原为DROP:$ /sbin/iptables -P FORWARD ACCEPT
07-01-03 配置docker 配置文件
使用国内的仓库镜像服务器以加快 pull image 的速度,同时增加下载的并发数 (需要重启 dockerd 生效):
cat > docker-daemon.json <<EOF
{ "registry-mirrors": ["https://hub-mirror.c.163.com", "https://docker.mirrors.ustc.edu.cn"], "max-concurrent-downloads": 20 }
EOF
07-01-04 分发docker 二进制文件、systemd unit 文件、docker 配置文件到所有 worker 机器
[root@kube-master ~]# vim /opt/k8s/script/scp_docker.sh
NODE_IPS=("192.168.10.108" "192.168.10.109" "192.168.10.110") for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" scp /root/docker/docker* k8s@${node_ip}:/opt/k8s/bin/ ssh k8s@${node_ip} "chmod +x /opt/k8s/bin/*" scp /opt/docker/docker.service root@${node_ip}:/etc/systemd/system/ ssh root@${node_ip} "mkdir -p /opt/docker/" scp /opt/docker/docker-daemon.json root@${node_ip}:/opt/docker/daemon.json done
07-01-05 启动并检查 docker 服务
[root@kube-master ~]# vim /opt/k8s/script/docker.sh
NODE_IPS=("192.168.10.108" "192.168.10.109" "192.168.10.110") for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" ssh root@${node_ip} "systemctl stop firewalld && systemctl disable firewalld" ssh root@${node_ip} "/usr/sbin/iptables -F && /usr/sbin/iptables -X && /usr/sbin/iptables -F -t nat && /usr/sbin/iptables -X -t nat" ssh root@${node_ip} "/usr/sbin/iptables -P FORWARD ACCEPT" ssh root@${node_ip} "systemctl daemon-reload && systemctl enable docker && systemctl restart docker" ssh root@${node_ip} \'for intf in /sys/devices/virtual/net/docker0/brif/*; do echo 1 > $intf/hairpin_mode; done\' ssh root@${node_ip} "sudo sysctl -p /etc/sysctl.d/kubernetes.conf" #检查服务运行状态 ssh k8s@${node_ip} "systemctl status docker|grep Active" #检查 docker0 网桥 ssh k8s@${node_ip} "/usr/sbin/ip addr show flannel.1 && /usr/sbin/ip addr show docker0" done
注:
- 关闭 firewalld(centos7)/ufw(ubuntu16.04),否则可能会重复创建 iptables 规则;
- 清理旧的 iptables rules 和 chains 规则;
- 开启 docker0 网桥下虚拟网卡的 hairpin 模式;
[root@kube-master ~]# chmod +x /opt/k8s/script/docker.sh && /opt/k8s/script/docker.sh
① 确保状态为 active (running),否则查看日志,确认原因:
$ journalctl -u docker
② 确认各 work 节点的 docker0 网桥和 flannel.1 接口的 IP 处于同一个网段中(如下10.30.22.0和 10.30.22.1):
4: flannel.1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UNKNOWN
link/ether ea:b3:44:ab:36:16 brd ff:ff:ff:ff:ff:ff
inet 10.30.89.0/32 scope global flannel.1
valid_lft forever preferred_lft forever
7: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UP
link/ether 02:42:8e:6e:ea:ef brd ff:ff:ff:ff:ff:ff
inet 10.30.89.1/24 brd 10.30.89.255 scope global docker0
valid_lft forever preferred_lft forever
07-02.部署 kubelet 组件
kublet 运行在每个 worker 节点上,接收 kube-apiserver 发送的请求,管理 Pod 容器,执行交互式命令,如 exec、run、logs 等。
kublet 启动时自动向 kube-apiserver 注册节点信息,内置的 cadvisor 统计和监控节点的资源使用情况。
为确保安全,本文档只开启接收 https 请求的安全端口,对请求进行认证和授权,拒绝未授权的访问(如 apiserver、heapster)。
1、下载和分发 kubelet 二进制文件
参考 06.部署master节点.md
2、安装依赖包
参考 07部署worker节点.md
07-02-01 创建 kubelet bootstrap kubeconfig 文件
[root@kube-master ~]# vim /opt/k8s/script/bootstrap_kubeconfig.sh
NODE_NAMES=("kube-master" "kube-node1" "kube-node2") for node_name in ${NODE_NAMES[@]};do echo ">>> ${node_name}" # 创建 token export BOOTSTRAP_TOKEN=$(kubeadm token create \ --description kubelet-bootstrap-token \ --groups system:bootstrappers:${node_name} \ --kubeconfig ~/.kube/config) # 设置集群参数 kubectl config set-cluster kubernetes \ --certificate-authority=/opt/k8s/cert/ca.pem \ --embed-certs=true \ --server=https://192.168.10.10:8443 \ --kubeconfig=~/.kube/kubelet-bootstrap-${node_name}.kubeconfig # 设置客户端认证参数 kubectl config set-credentials kubelet-bootstrap \ --token=${BOOTSTRAP_TOKEN} \ --kubeconfig=~/.kube/kubelet-bootstrap-${node_name}.kubeconfig # 设置上下文参数 kubectl config set-context default \ --cluster=kubernetes \ --user=kubelet-bootstrap \ --kubeconfig=~/.kube/kubelet-bootstrap-${node_name}.kubeconfig # 设置默认上下文 kubectl config use-context default --kubeconfig=~/.kube/kubelet-bootstrap-${node_name}.kubeconfig done
[root@kube-master ~]# chmod +x /opt/k8s/script/bootstrap_kubeconfig.sh && /opt/k8s/script/bootstrap_kubeconfig.sh
注:
① 证书中写入 Token 而非证书,证书后续由 controller-manager 创建。
查看 kubeadm 为各节点创建的 token:
[root@kube-master ~]# kubeadm token list –kubeconfig ~/.kube/config
TOKEN TTL EXPIRES USAGES DESCRIPTION EXTRA GROUPS
8hpvxm.w5uctmxzlphfh37l 23h 2018-11-30T16:03:27+08:00 authentication,signing kubelet-bootstrap-token system:bootstrappers:kube-node1
gktdpg.5x931bwfzf4z4hjt 23h 2018-11-30T16:03:27+08:00 authentication,signing kubelet-bootstrap-token system:bootstrappers:kube-node2
ttbgfq.19zeet23eohtdo65 23h 2018-11-30T16:03:26+08:00 authentication,signing kubelet-bootstrap-token system:bootstrappers:kube-master
② 创建的 token 有效期为 1 天,超期后将不能再被使用,且会被 kube-controller-manager 的 tokencleaner 清理(如果启用该 controller 的话);
③ kube-apiserver 接收 kubelet 的 bootstrap token 后,将请求的 user 设置为 system:bootstrap:,group 设置为 system:bootstrappers;
各 token 关联的 Secret:
[root@kube-master ~]# kubectl get secrets -n kube-system
NAME TYPE DATA AGE
bootstrap-token-8hpvxm bootstrap.kubernetes.io/token 7 7m
bootstrap-token-gktdpg bootstrap.kubernetes.io/token 7 7m
bootstrap-token-ttbgfq bootstrap.kubernetes.io/token 7 7m
default-token-5lvn4 kubernetes.io/service-account-token 3 4h
07-02-02 创建kubelet 参数配置文件
从 v1.10 开始,kubelet 部分参数需在配置文件中配置,kubelet –help 会提示:
DEPRECATED: This parameter should be set via the config file specified by the Kubelet\’s –config flag
[root@kube-master ~]# mkdir /opt/kubelet
[root@kube-master ~]# cd /opt/kubelet
[root@kube-master kubelet]# vim kubelet.config.json.template
{ "kind": "KubeletConfiguration", "apiVersion": "kubelet.config.k8s.io/v1beta1", "authentication": { "x509": { "clientCAFile": "/opt/k8s/cert/ca.pem" }, "webhook": { "enabled": true, "cacheTTL": "2m0s" }, "anonymous": { "enabled": false } }, "authorization": { "mode": "Webhook", "webhook": { "cacheAuthorizedTTL": "5m0s", "cacheUnauthorizedTTL": "30s" } }, "address": "##NODE_IP##", "port": 10250, "readOnlyPort": 0, "cgroupDriver": "cgroupfs", "hairpinMode": "promiscuous-bridge", "serializeImagePulls": false, "featureGates": { "RotateKubeletClientCertificate": true, "RotateKubeletServerCertificate": true }, "clusterDomain": "cluster.local", "clusterDNS": ["10.90.0.2"] }
07-02-03 分发 bootstrap kubeconfig 、kubelet 配置文件到所有 worker 节点
[root@kube-master ~]# vim /opt/k8s/script/scp_kubelet.sh
NODE_IPS=("192.168.10.108" "192.168.10.109" "192.168.10.110") NODE_NAMES=("kube-master" "kube-node1" "kube-node2") for node_name in ${NODE_NAMES[@]};do echo ">>> ${node_name}" scp ~/.kube/kubelet-bootstrap-${node_name}.kubeconfig k8s@${node_name}:/opt/k8s/kubelet-bootstrap.kubeconfig done for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" sed -e "s/##NODE_IP##/${node_ip}/" /opt/kubelet/kubelet.config.json.template > /opt/kubelet/kubelet.config-${node_ip}.json scp /opt/kubelet/kubelet.config-${node_ip}.json root@${node_ip}:/opt/k8s/kubelet.config.json done
[root@kube-master ~]# chmod +x /opt/k8s/script/scp_kubelet.sh && /opt/k8s/script/scp_kubelet.sh
07-02-04 创建kubelet systemd unit 文件
[root@kube-master ~]# vim /opt/kubelet/kubelet.service.template
[Unit] Description=Kubernetes Kubelet Documentation=https://github.com/GoogleCloudPlatform/kubernetes After=docker.service Requires=docker.service [Service] WorkingDirectory=/opt/lib/kubelet ExecStart=/opt/k8s/bin/kubelet \ --bootstrap-kubeconfig=/opt/k8s/kubelet-bootstrap.kubeconfig \ --cert-dir=/opt/k8s/cert \ --kubeconfig=/opt/k8s/kubelet.kubeconfig \ --config=/opt/k8s/kubelet.config.json \ --hostname-override=##NODE_NAME## \ --pod-infra-container-image=registry.access.redhat.com/rhel7/pod-infrastructure:latest \ --allow-privileged=true \ --alsologtostderr=true \ --logtostderr=false \ --log-dir=/opt/log/kubernetes \ --v=2 Restart=on-failure RestartSec=5 [Install] WantedBy=multi-user.target
07-02-05 Bootstrap Token Auth 和授予权限
1、kublet 启动时查找配置的 –kubeletconfig 文件是否存在,如果不存在则使用 –bootstrap-kubeconfig 向 kube-apiserver 发送证书签名请求 (CSR)。
2、kube-apiserver 收到 CSR 请求后,对其中的 Token 进行认证(事先使用 kubeadm 创建的 token),认证通过后将请求的 user 设置为 system:bootstrap:,group 设置为 system:bootstrappers,这一过程称为 Bootstrap Token Auth。
3、默认情况下,这个 user 和 group 没有创建 CSR 的权限,kubelet 启动失败,错误日志如下:
$ sudo journalctl -u kubelet -a |grep -A 2 \’certificatesigningrequests\’ May 06 06:42:36 kube-node1 kubelet[26986]: F0506 06:42:36.314378 26986 server.go:233] failed to run Kubelet: cannot create certificate signing request: certificatesigningrequests.certificates.k8s.io is forbidden: User “system:bootstrap:lemy40” cannot create certificatesigningrequests.certificates.k8s.io at the cluster scope May 06 06:42:36 kube-node1 systemd[1]: kubelet.service: Main process exited, code=exited, status=255/n/a May 06 06:42:36 kube-node1 systemd[1]: kubelet.service: Failed with result \’exit-code\’.
4、解决办法是:创建一个 clusterrolebinding,将 group system:bootstrappers 和 clusterrole system:node-bootstrapper 绑定:
[root@kube-master ~]# kubectl create clusterrolebinding kubelet-bootstrap –clusterrole=system:node-bootstrapper –group=system:bootstrappers
07-02-06 启动 kubelet 服务
[root@kube-master ~]# vim /opt/k8s/script/kubelet.sh
NODE_IPS=("192.168.10.108" "192.168.10.109" "192.168.10.110") NODE_NAMES=("kube-master" "kube-node1" "kube-node2") #分发kubelet systemd unit 文件 for node_name in ${NODE_NAMES[@]};do echo ">>> ${node_name}" sed -e "s/##NODE_NAME##/${node_name}/" /opt/kubelet/kubelet.service.template > /opt/kubelet/kubelet-${node_name}.service scp /opt/kubelet/kubelet-${node_name}.service root@${node_name}:/etc/systemd/system/kubelet.service done #开启检查kubelet 服务 for node_ip in ${NODE_IPS[@]};do ssh root@${node_ip} "mkdir -p /opt/lib/kubelet" ssh root@${node_ip} "/usr/sbin/swapoff -a" ssh root@${node_ip} "mkdir -p /opt/log/kubernetes && chown -R k8s /opt/log/kubernetes" ssh root@${node_ip} "systemctl daemon-reload && systemctl enable kubelet && systemctl restart kubelet" ssh root@${node_ip} "systemctl status kubelet |grep active" done
注:
- 关闭 swap 分区,注意/etc/fstab 要设为开机不启动swap分区,否则 kubelet 会启动失败;
- 必须先创建工作和日志目录;
- kubelet 启动后使用 –bootstrap-kubeconfig 向 kube-apiserver 发送 CSR 请求,当这个 CSR 被 approve 后,kube-controller-manager 为 kubelet 创建 TLS 客户端证书、私钥和 –kubeletconfig 文件。
- kube-controller-manager 需要配置 –cluster-signing-cert-file 和 –cluster-signing-key-file 参数,才会为 TLS Bootstrap 创建证书和私钥。
07-02-07 approve kubelet CSR 请求
可以手动或自动 approve CSR 请求。推荐使用自动的方式,因为从 v1.8 版本开始,可以自动轮转approve csr 后生成的证书。
1、手动 approve CSR 请求
(1)查看 CSR 列表:
[root@kube-master ~]# kubectl get csr
NAME AGE REQUESTOR CONDITION
node-csr-SdkiSnAdFByBTIJDyFWTBSTIDMJKxwxQt9gEExFX5HU 4m system:bootstrap:8hpvxm Pending
node-csr-atMwF8GpKbDEcGjzCTXF1NYo9Jc1AzE2yQoxaU8NAkw 7m system:bootstrap:ttbgfq Pending
node-csr-qxa30a9GRg35iNEl3PYZOIICMo_82qPrqNu6PizEZXw 4m system:bootstrap:gktdpg Pending
三个 work 节点的 csr 均处于 pending 状态;
(2)approve CSR:
[root@kube-master ~]# kubectl certificate approve node-csr-SdkiSnAdFByBTIJDyFWTBSTIDMJKxwxQt9gEExFX5HU
certificatesigningrequest.certificates.k8s.io “node-csr-SdkiSnAdFByBTIJDyFWTBSTIDMJKxwxQt9gEExFX5HU” approved
(3)查看 Approve 结果:
[root@kube-master ~]# kubectl describe csr node-csr-SdkiSnAdFByBTIJDyFWTBSTIDMJKxwxQt9gEExFX5HU
Name: node-csr-SdkiSnAdFByBTIJDyFWTBSTIDMJKxwxQt9gEExFX5HU
Labels: <none>
Annotations: <none>
CreationTimestamp: Thu, 29 Nov 2018 17:51:43 +0800
Requesting User: system:bootstrap:8hpvxm
Status: Approved,Issued
Subject:
Common Name: system:node:kube-node1
Serial Number:
Organization: system:nodes
Events: <none>
2、自动 approve CSR 请求
(1)创建三个 ClusterRoleBinding,分别用于自动 approve client、renew client、renew server 证书:
[root@kube-master ~]# cat > /opt/kubelet/csr-crb.yaml <<EOF
# Approve all CSRs for the group “system:bootstrappers” kind: ClusterRoleBinding apiVersion: rbac.authorization.k8s.io/v1 metadata: name: auto-approve-csrs-for-group subjects: – kind: Group name:
# Approve all CSRs for the group "system:bootstrappers" kind: ClusterRoleBinding apiVersion: rbac.authorization.k8s.io/v1 metadata: name: auto-approve-csrs-for-group subjects: - kind: Group name: system:bootstrappers apiGroup: rbac.authorization.k8s.io roleRef: kind: ClusterRole name: system:certificates.k8s.io:certificatesigningrequests:nodeclient apiGroup: rbac.authorization.k8s.io --- # To let a node of the group "system:nodes" renew its own credentials kind: ClusterRoleBinding apiVersion: rbac.authorization.k8s.io/v1 metadata: name: node-client-cert-renewal subjects: - kind: Group name: system:nodes apiGroup: rbac.authorization.k8s.io roleRef: kind: ClusterRole name: system:certificates.k8s.io:certificatesigningrequests:selfnodeclient apiGroup: rbac.authorization.k8s.io --- # A ClusterRole which instructs the CSR approver to approve a node requesting a # serving cert matching its client cert. kind: ClusterRole apiVersion: rbac.authorization.k8s.io/v1 metadata: name: approve-node-server-renewal-csr rules: - apiGroups: ["certificates.k8s.io"] resources: ["certificatesigningrequests/selfnodeserver"] verbs: ["create"] --- # To let a node of the group "system:nodes" renew its own server credentials kind: ClusterRoleBinding apiVersion: rbac.authorization.k8s.io/v1 metadata: name: node-server-cert-renewal subjects: - kind: Group name: system:nodes apiGroup: rbac.authorization.k8s.io roleRef: kind: ClusterRole name: approve-node-server-renewal-csr apiGroup: rbac.authorization.k8s.io
EOF
注:
- auto-approve-csrs-for-group:自动 approve node 的第一次 CSR; 注意第一次 CSR 时,请求的 Group 为 system:bootstrappers;
- node-client-cert-renewal:自动 approve node 后续过期的 client 证书,自动生成的证书 Group 为 system:nodes;
- node-server-cert-renewal:自动 approve node 后续过期的 server 证书,自动生成的证书 Group 为 system:nodes;
(2)生效配置:
[root@kube-master ~]# $ kubectl apply -f /opt/kubelet/csr-crb.yaml
07-02-08 查看 kublet 的情况
1、等待一段时间(1-10 分钟),三个节点的 CSR 都被自动 approve:
[root@kube-master ~]# kubectl get csr
NAME AGE REQUESTOR CONDITION
csr-kvbtt 15h system:node:kube-node1 Approved,Issued
csr-p9b9s 15h system:node:kube-node2 Approved,Issued
csr-rjpr9 15h system:node:kube-master Approved,Issued
node-csr-8Sr42M0z_LzZeHU-RCbgOynJm3Z2TsSXHuAlohfJiIM 15h system:bootstrap:ttbgfq Approved,Issued
node-csr-SdkiSnAdFByBTIJDyFWTBSTIDMJKxwxQt9gEExFX5HU 15h system:bootstrap:8hpvxm Approved,Issued
node-csr-atMwF8GpKbDEcGjzCTXF1NYo9Jc1AzE2yQoxaU8NAkw 15h system:bootstrap:ttbgfq Approved,Issued
node-csr-elVB0jp36nOHuOYlITWDZx8LoO2Ly4aW0VqgYxw_Te0 15h system:bootstrap:gktdpg Approved,Issued
node-csr-muNcDteZINLZnSv8FkhOMaP2ob5uw82PGwIAynNNrco 15h system:bootstrap:ttbgfq Approved,Issued
node-csr-qxa30a9GRg35iNEl3PYZOIICMo_82qPrqNu6PizEZXw 15h system:bootstrap:gktdpg Approved,Issued
2、所有节点均 ready:
[root@kube-master ~]# kubectl get nodes
NAME STATUS ROLES AGE VERSION
kube-master Ready <none> 25s v1.10.4
kube-node1 Ready <none> 7m v1.10.4
kube-node2 Ready <none> 21s v1.10.4
3、kube-controller-manager 为各 node 生成了 kubeconfig 文件和公私钥:
[root@kube-master ~]# ll /opt/k8s/kubelet.kubeconfig
-rw——- 1 root root 2280 Nov 29 18:05 /opt/k8s/kubelet.kubeconfig
[root@kube-master ~]# ll /opt/k8s/cert/ |grep kubelet
-rw-r–r– 1 root root 1050 Nov 29 18:05 kubelet-client.crt
-rw——- 1 root root 227 Nov 29 18:01 kubelet-client.key
-rw——- 1 root root 1338 Nov 29 18:05 kubelet-server-2018-11-29-18-05-11.pem
lrwxrwxrwx 1 root root 52 Nov 29 18:05 kubelet-server-current.pem -> /opt/k8s/cert/kubelet-server-2018-11-29-18-05-11.pem
注:kubelet-server 证书会周期轮转;
07-02-09 kubelet 提供的 API 接口
1、kublet 启动后监听多个端口,用于接收 kube-apiserver 或其它组件发送的请求:
[root@kube-master ~]# ss -nutlp |grep kubelet
tcp LISTEN 0 128 192.168.10.108:10250 *:* users:((“kubelet”,pid=2797,fd=22))
tcp LISTEN 0 128 192.168.10.108:4194 *:* users:((“kubelet”,pid=2797,fd=13))
tcp LISTEN 0 128 127.0.0.1:10248 *:* users:((“kubelet”,pid=2797,fd=32))
注:
- 4194: cadvisor http 服务;
- 10248: healthz http 服务;
- 10250: https API 服务;注意:未开启只读端口 10255;
2、例如执行 kubectl ec -it nginx-ds-5rmws — sh 命令时,kube-apiserver 会向 kubelet 发送如下请求:
POST /exec/default/nginx-ds-5rmws/my-nginx?command=sh&input=1&output=1&tty=1
3、kubelet 接收 10250 端口的 https 请求:
- /pods、/runningpods
- /metrics、/metrics/cadvisor、/metrics/probes
- /spec
- /stats、/stats/container
- /logs
- /run/、“/exec/”, “/attach/”, “/portForward/”, “/containerLogs/” 等管理;
4、由于关闭了匿名认证,同时开启了 webhook 授权,所有访问 10250 端口 https API 的请求都需要被认证和授权。
预定义的 ClusterRole system:kubelet-api-admin 授予访问 kubelet 所有 API 的权限:
[root@kube-master ~]# kubectl describe clusterrole system:kubelet-api-admin
Name: system:kubelet-api-admin
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
PolicyRule:
Resources Non-Resource URLs Resource Names Verbs
——— —————– ————– —–
nodes [] [] [get list watch proxy]
nodes/log [] [] [*]
nodes/metrics [] [] [*]
nodes/proxy [] [] [*]
nodes/spec [] [] [*]
nodes/stats [] [] [*]
07-02-10 kublet api 认证和授权
1、kublet 配置了如下认证参数:
- authentication.anonymous.enabled:设置为 false,不允许匿名访问 10250 端口;
- authentication.x509.clientCAFile:指定签名客户端证书的 CA 证书,开启 HTTPs 证书认证;
- authentication.webhook.enabled=true:开启 HTTPs bearer token 认证;
同时配置了如下授权参数:
- authroization.mode=Webhook:开启 RBAC 授权;
2、kubelet 收到请求后,使用 clientCAFile 对证书签名进行认证,或者查询 bearer token 是否有效。如果两者都没通过,则拒绝请求,提示 Unauthorized:
[root@kube-master ~]# curl -s –cacert /opt/k8s/cert/ca.pem https://192.168.10.109:10250/metrics
Unauthorized
[root@kube-master ~]# curl -s –cacert /opt/k8s/cert/ca.pem -H “Authorization: Bearer 123456” https://192.168.10.109:10250/metrics
Unauthorized
3、通过认证后,kubelet 使用 SubjectAccessReview API 向 kube-apiserver 发送请求,查询证书或 token 对应的 user、group 是否有操作资源的权限(RBAC);
证书认证和授权:
$ 权限不足的证书;
[root@kube-master ~]# curl -s –cacert /opt/k8s/cert/ca.pem –cert /opt/k8s/cert/kube-controller-manager.pem –key /opt/k8s/cert/kube-controller-manager-key.pem https://192.168.10.109:10250/metrics
Forbidden (user=system:kube-controller-manager, verb=get, resource=nodes, subresource=metrics)
$ 使用部署 kubectl 命令行工具时创建的、具有最高权限的 admin 证书;
[root@kube-master cert]# curl -s –cacert /opt/k8s/cert/ca.pem –cert /opt/k8s/cert/admin.pem –key /opt/k8s/cert/admin-key.pem https://192.168.10.109:10250/metrics|head
# HELP apiserver_client_certificate_expiration_seconds Distribution of the remaining lifetime on the certificate used to authenticate a request.
# TYPE apiserver_client_certificate_expiration_seconds histogram
apiserver_client_certificate_expiration_seconds_bucket{le=”0″} 0
apiserver_client_certificate_expiration_seconds_bucket{le=”21600″} 0
apiserver_client_certificate_expiration_seconds_bucket{le=”43200″} 0
apiserver_client_certificate_expiration_seconds_bucket{le=”86400″} 0
apiserver_client_certificate_expiration_seconds_bucket{le=”172800″} 0
apiserver_client_certificate_expiration_seconds_bucket{le=”345600″} 0
apiserver_client_certificate_expiration_seconds_bucket{le=”604800″} 0
apiserver_client_certificate_expiration_seconds_bucket{le=”2.592e+06″} 0
- –cacert、–cert、–key 的参数值必须是文件路径,如上面的/opt/k8s/cert/admin.pem 不能省略 ./,否则返回 401 Unauthorized;
4、bear token 认证和授权:
创建一个 ServiceAccount,将它和 ClusterRole system:kubelet-api-admin 绑定,从而具有调用 kubelet API 的权限:
[root@kube-master ~]# kubectl create sa kubelet-api-test
serviceaccount “kubelet-api-test” created
[root@kube-master ~]# kubectl create clusterrolebinding kubelet-api-test –clusterrole=system:kubelet-api-admin –serviceaccount=default:kubelet-api-test
clusterrolebinding.rbac.authorization.k8s.io “kubelet-api-test” created
[root@kube-master ~]# SECRET=$(kubectl get secrets | grep kubelet-api-test | awk \'{print $1}\’)
[root@kube-master ~]# TOKEN=$(kubectl describe secret ${SECRET} | grep -E \’^token\’ | awk \'{print $2}\’)
[root@kube-master ~]# curl -s –cacert /opt/k8s/cert/ca.pem -H “Authorization: Bearer ${TOKEN}” https://192.168.10.109:10250/metrics|head
# HELP apiserver_client_certificate_expiration_seconds Distribution of the remaining lifetime on the certificate used to authenticate a request.
# TYPE apiserver_client_certificate_expiration_seconds histogram
apiserver_client_certificate_expiration_seconds_bucket{le=”0″} 0
apiserver_client_certificate_expiration_seconds_bucket{le=”21600″} 0
apiserver_client_certificate_expiration_seconds_bucket{le=”43200″} 0
apiserver_client_certificate_expiration_seconds_bucket{le=”86400″} 0
apiserver_client_certificate_expiration_seconds_bucket{le=”172800″} 0
apiserver_client_certificate_expiration_seconds_bucket{le=”345600″} 0
apiserver_client_certificate_expiration_seconds_bucket{le=”604800″} 0
apiserver_client_certificate_expiration_seconds_bucket{le=”2.592e+06″} 0
07-02-11 cadvisor 和 metrics
cadvisor 统计所在节点各容器的资源(CPU、内存、磁盘、网卡)使用情况,分别在自己的 http web 页面(4194 端口)和 10250 以 promehteus metrics 的形式输出。
浏览器访问 http://192.168.10.108:4194/containers/ 可以查看到 cadvisor 的监控页面:
07-02-12 获取 kublet 的配置
从 kube-apiserver 获取各 node 的配置:
使用部署 kubectl 命令行工具时创建的、具有最高权限的 admin 证书;
[root@kube-master ~]# curl -sSL –cacert /opt/k8s/cert/ca.pem –cert /opt/k8s/cert/admin.pem –key /opt/k8s/cert/admin-key.pem https://192.168.10.10:8443/api/v1/nodes/kube-node1/proxy/configz | jq \
\’.kubeletconfig|.kind=”KubeletConfiguration”|.apiVersion=”kubelet.config.k8s.io/v1beta1″\’
{
“syncFrequency”: “1m0s”,
“fileCheckFrequency”: “20s”,
“httpCheckFrequency”: “20s”,
“address”: “192.168.10.109”,
“port”: 10250,
“authentication”: {
“x509”: {
“clientCAFile”: “/opt/k8s/cert/ca.pem”
},
“webhook”: {
“enabled”: true,
“cacheTTL”: “2m0s”
},
“anonymous”: {
“enabled”: false
}
},
“authorization”: {
“mode”: “Webhook”,
“webhook”: {
“cacheAuthorizedTTL”: “5m0s”,
“cacheUnauthorizedTTL”: “30s”
}
},
“registryPullQPS”: 5,
“registryBurst”: 10,
“eventRecordQPS”: 5,
“eventBurst”: 10,
“enableDebuggingHandlers”: true,
“healthzPort”: 10248,
“healthzBindAddress”: “127.0.0.1”,
“oomScoreAdj”: -999,
“clusterDomain”: “cluster.local.”,
“clusterDNS”: [
“10.96.0.2”
],
“streamingConnectionIdleTimeout”: “4h0m0s”,
“nodeStatusUpdateFrequency”: “10s”,
“imageMinimumGCAge”: “2m0s”,
“imageGCHighThresholdPercent”: 85,
“imageGCLowThresholdPercent”: 80,
“volumeStatsAggPeriod”: “1m0s”,
“cgroupsPerQOS”: true,
“cgroupDriver”: “cgroupfs”,
“cpuManagerPolicy”: “none”,
“cpuManagerReconcilePeriod”: “10s”,
“runtimeRequestTimeout”: “2m0s”,
“hairpinMode”: “promiscuous-bridge”,
“maxPods”: 110,
“podPidsLimit”: -1,
“resolvConf”: “/etc/resolv.conf”,
“cpuCFSQuota”: true,
“maxOpenFiles”: 1000000,
“contentType”: “application/vnd.kubernetes.protobuf”,
“kubeAPIQPS”: 5,
“kubeAPIBurst”: 10,
“serializeImagePulls”: false,
“evictionHard”: {
“imagefs.available”: “15%”,
“memory.available”: “100Mi”,
“nodefs.available”: “10%”,
“nodefs.inodesFree”: “5%”
},
“evictionPressureTransitionPeriod”: “5m0s”,
“enableControllerAttachDetach”: true,
“makeIPTablesUtilChains”: true,
“iptablesMasqueradeBit”: 14,
“iptablesDropBit”: 15,
“featureGates”: {
“RotateKubeletClientCertificate”: true,
“RotateKubeletServerCertificate”: true
},
“failSwapOn”: true,
“containerLogMaxSize”: “10Mi”,
“containerLogMaxFiles”: 5,
“enforceNodeAllocatable”: [
“pods”
],
“kind”: “KubeletConfiguration”,
“apiVersion”: “kubelet.config.k8s.io/v1beta1”
}
07-03.部署 kube-proxy 组件
kube-proxy 运行在所有 worker 节点上,,它监听 apiserver 中 service 和 Endpoint 的变化情况,创建路由规则来进行服务负载均衡。
本文档讲解部署 kube-proxy 的部署,使用 ipvs 模式。
1、下载和分发 kube-proxy 二进制文件
参考 06.部署master节点.md
2、安装依赖包
各节点需要安装 ipvsadm 和 ipset 命令,加载 ip_vs 内核模块。
参考 07.部署worker节点.md
07-03-01 创建 kube-proxy 证书
创建证书签名请求:
[root@kube-master ~]# cd /opt/k8s/cert/
[root@kube-master cert]# cat > kube-proxy-csr.json << EOF
{ "CN": "system:kube-proxy", "key": { "algo": "rsa", "size": 2048 }, "names": [ { "C": "CN", "ST": "BeiJing", "L": "BeiJing", "O": "k8s", "OU": "4Paradigm" } ] }
EOF
注:
- CN:指定该证书的 User 为 system:kube-proxy;
- 预定义的 RoleBinding system:node-proxier 将User system:kube-proxy 与 Role system:node-proxier 绑定,该 Role 授予了调用 kube-apiserver Proxy 相关 API 的权限;
- 该证书只会被 kube-proxy 当做 client 证书使用,所以 hosts 字段为空;
07-03-02 生成证书和私钥
[root@kube-master cert]# cfssl gencert -ca=/opt/k8s/cert/ca.pem \
-ca-key=/opt/k8s/cert/ca-key.pem \
-config=/opt/k8s/cert/ca-config.json \
-profile=kubernetes kube-proxy-csr.json | cfssljson_linux-amd64 -bare kube-proxy
[root@kube-master cert]# ls *kube-proxy*
kube-proxy.csr kube-proxy-csr.json kube-proxy-key.pem kube-proxy.pem
07-03-03 创建kubeconfig 文件
[root@kube-master ~]# kubectl config set-cluster kubernetes \
–certificate-authority=/opt/k8s/cert/ca.pem \
–embed-certs=true \
–server=https://192.168.10.10:8443 \
–kubeconfig=/root/.kube/kube-proxy.kubeconfig
[root@kube-master ~]# kubectl config set-credentials kube-proxy \
–client-certificate=/opt/k8s/cert/kube-proxy.pem \
–client-key=/opt/k8s/cert/kube-proxy-key.pem \
–embed-certs=true \
–kubeconfig=/root/.kube/kube-proxy.kubeconfig
[root@kube-master ~]# kubectl config set-context kube-proxy@kubernetes \
–cluster=kubernetes \
–user=kube-proxy \
–kubeconfig=/root/.kube/kube-proxy.kubeconfig
[root@kube-master ~]# kubectl config use-context kube-proxy@kubernetes –kubeconfig=/root/.kube/kube-proxy.kubeconfig
注:
- –embed-certs=true:将 ca.pem 和 admin.pem 证书内容嵌入到生成的 kubectl-proxy.kubeconfig 文件中(不加时,写入的是证书文件路径);
[root@kube-master ~]# kubectl config view –kubeconfig=/root/.kube/kube-proxy.kubeconfig
apiVersion: v1 clusters: - cluster: certificate-authority-data: REDACTED server: https://192.168.10.10:8443 name: kubernetes contexts: - context: cluster: kubernetes user: kube-proxy name: kube-proxy@kubernetes current-context: kube-proxy@kubernetes kind: Config preferences: {} users: - name: kube-proxy user: client-certificate-data: REDACTED client-key-data: REDACTED
07-03-04 创建 kube-proxy 配置文件
从 v1.10 开始,kube-proxy 部分参数可以配置文件中配置。可以使用 –write-config-to 选项生成该配置文件,
创建 kube-proxy config 文件模板
[root@kube-master ~]# mkdir /opt/kube-proxy
[root@kube-master ~]# cd /opt/kube-proxy
[root@kube-master kube-proxy]# cat >kube-proxy.config.yaml.template <<EOF
apiVersion: kubeproxy.config.k8s.io/v1alpha1 bindAddress: ##NODE_IP## clientConnection: kubeconfig: /opt/k8s/kube-proxy.kubeconfig clusterCIDR: 10.96.0.0/16 healthzBindAddress: ##NODE_IP##:10256 hostnameOverride: ##NODE_NAME## kind: KubeProxyConfiguration metricsBindAddress: ##NODE_IP##:10249 mode: "ipvs"
EOF
注:
- bindAddress: 监听地址;
- clientConnection.kubeconfig: 连接 apiserver 的 kubeconfig 文件;
- clusterCIDR: kube-proxy 根据 –cluster-cidr 判断集群内部和外部流量,指定 –cluster-cidr 或 –masquerade-all选项后 kube-proxy 才会对访问 Service IP 的请求做 SNAT;
- hostnameOverride: 参数值必须与 kubelet 的值一致,否则 kube-proxy 启动后会找不到该 Node,从而不会创建任何 ipvs 规则;
- mode: 使用 ipvs 模式;
07-03-05 分发 kubeconfig、kube-proxy systemd unit 文件;启动并检查kube-proxy 服务
[root@kube-master ~]# vim /opt/k8s/script/kube_proxy.sh
NODE_IPS=("192.168.10.108" "192.168.10.109" "192.168.10.110") NODE_NAMES=("kube-master" "kube-node1" "kube-node2") for (( i=0; i < 3; i++ ));do echo ">>> ${NODE_NAMES[i]}" sed -e "s/##NODE_NAME##/${NODE_NAMES[i]}/" -e "s/##NODE_IP##/${NODE_IPS[i]}/" /opt/kube-proxy/kube-proxy.config.yaml.template > /opt/kube-proxy/kube-proxy-${NODE_NAMES[i]}.config.yaml scp /opt/kube-proxy/kube-proxy-${NODE_NAMES[i]}.config.yaml root@${NODE_NAMES[i]}:/opt/k8s/kube-proxy.config.yaml done for node_ip in ${NODE_IPS[@]};do echo ">>> ${node_ip}" scp /root/.kube/kube-proxy.kubeconfig k8s@${node_ip}:/opt/k8s/ scp /opt/kube-proxy/kube-proxy.service root@${node_ip}:/etc/systemd/system/ ssh root@${node_ip} "mkdir -p /opt/lib/kube-proxy" ssh root@${node_ip} "mkdir -p /opt/log/kubernetes && chown -R k8s /var/log/kubernetes" ssh root@${node_ip} "systemctl daemon-reload && systemctl enable kube-proxy && systemctl restart kube-proxy" ssh k8s@${node_ip} "systemctl status kube-proxy|grep Active" done
[root@kube-master ~]# chmod +x /opt/k8s/script/kube_proxy.sh && /opt/k8s/script/kube_proxy.sh
07-03-06 查看监听端口和 metrics
[root@kube-master ~]# ss -nutlp |grep kube-prox
tcp LISTEN 0 128 192.168.10.108:10256 *:* users:((“kube-proxy”,pid=34230,fd=10))
tcp LISTEN 0 128 192.168.10.108:10249 *:* users:((“kube-proxy”,pid=34230,fd=11))
- 10249:http prometheus metrics port;
- 10256:http healthz port;
07-03-07 查看 ipvs 路由规则
[root@kube-master ~]# /usr/sbin/ipvsadm -ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
-> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 10.96.0.1:443 rr persistent 10800
-> 192.168.10.108:6443 Masq 1 0 0
-> 192.168.10.109:6443 Masq 1 0 0
-> 192.168.10.110:6443 Masq 1 0 0
可见将所有到 kubernetes cluster ip 443 端口的请求都转发到 kube-apiserver 的 6443 端口;
08.验证集群功能
本文档使用 daemonset 验证 master 和 worker 节点是否工作正常。
08-01 检查节点状态
[root@kube-master ~]# kubectl get nodes
NAME STATUS ROLES AGE VERSION
kube-master Ready <none> 21h v1.10.4
kube-node1 Ready <none> 21h v1.10.4
kube-node2 Ready <none> 21h v1.10.4
都为 Ready 时正常。
08-02 创建测试文件
[root@kube-master ~]# mkdir /opt/k8s/damo
[root@kube-master ~]# cat > nginx-ds.yml <<EOF
apiVersion: v1 kind: Service metadata: name: nginx-ds labels: app: nginx-ds spec: type: NodePort selector: app: nginx-ds ports: - name: http port: 80 targetPort: 80 --- apiVersion: extensions/v1beta1 kind: DaemonSet metadata: name: nginx-ds labels: addonmanager.kubernetes.io/mode: Reconcile spec: template: metadata: labels: app: nginx-ds spec: containers: - name: my-nginx image: nginx:1.7.9 ports: - containerPort: 80
EOF
执行定义文件
[root@kube-master ~]# kubectl create -f /opt/k8s/damo/nginx-ds.yml
service “nginx-ds” created
daemonset.extensions “nginx-ds” created
08-03 检查各 Node 上的 Pod IP 连通性
因为需要拖拉镜像、创建Pod,所以需要等一段时间
[root@kube-master ~]# kubectl get pods -o wide|grep nginx-ds
nginx-ds-7cz4p 1/1 Running 0 4m 10.30.22.2 kube-master
nginx-ds-lg585 1/1 Running 0 4m 10.30.44.2 kube-node2
nginx-ds-zc448 1/1 Running 0 4m 10.30.33.2 kube-node1
可见,nginx-ds 的 Pod IP 分别是 10.30.22.2、10.30.44.2、10.30.33.2,在所有 Node 上分别 ping 这三个 IP,看是否连通:
[root@kube-master ~]# NODE_IPS=(“192.168.10.108” “192.168.10.109” “192.168.10.110”);\
[root@kube-master ~]# for node_ip in ${NODE_IPS[@]};do \ echo “>>> ${node_ip}” ;\ ssh ${node_ip} “ping -c 1 10.30.22.2”; \ ssh ${node_ip} “ping -c 1 10.30.44.2”; \ ssh ${node_ip} “ping -c 1 10.30.33.2”; \ done
08-04 检查服务 IP 和端口可达性
[root@kube-master ~]# kubectl get svc |grep nginx-ds
nginx-ds NodePort 10.96.192.157 <none> 80:15131/TCP 9m
可见:
- Service Cluster IP:10.96.192.157
- 服务端口:80
- NodePort 端口:15131
在所有 Node 上 curl Service IP:
[root@kube-master ~]# curl 10.96.192.157
[root@kube-node1 ~]# curl 10.96.192.157
[root@kube-node2 ~]# curl 10.96.192.157
预期输出 nginx 欢迎页面内容。
08-05 检查服务的 NodePort 可达性
在所有 Node 上执行:预期输出 nginx 欢迎页面内容。
[root@kube-master ~]# curl 192.168.10.108:15131
[root@kube-master ~]# curl 192.168.10.109:15131
[root@kube-master ~]# curl 192.168.10.110:15131
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>
<p>For online documentation and support please refer to
<a href=”http://nginx.org/”>nginx.org</a>.<br/>
Commercial support is available at
<a href=”http://nginx.com/”>nginx.com</a>.</p>
<p><em>Thank you for using nginx.</em></p>
</body>
</html>