前段时间写过一遍文章<一文揭秘定时任务调度框架quartz>,有读者建议我再讲讲elastic-job这个任务调度框架,年末没有那么忙,就来学习一下elastic-job。

首先一点,elastic-job基于quartz,理解quartz的运行机制有助于对elastic-job的快速理解。

首先看一下elastic-job-lite的架构

我们知道quartz有三个重要的概念:Job,Trigger,Scheduler。那么elastic-job里面三个概念是什么体现的呢?

1.Job

LiteJob继承自quartz的job接口

import org.quartz.Job;
import org.quartz.JobExecutionContext;
import org.quartz.JobExecutionException;

/**
 * Lite调度作业.
 *
 * @author zhangliang
 */
public final class LiteJob implements Job {
    
    @Setter
    private ElasticJob elasticJob;
    
    @Setter
    private JobFacade jobFacade;
    
    @Override
    public void execute(final JobExecutionContext context) throws JobExecutionException {
        JobExecutorFactory.getJobExecutor(elasticJob, jobFacade).execute();
    }
}

其中,

1.1 ElasticJob实现了不同的Job类型

1.2.JobFacade是作业内部服务门面服务

注意:elasticJob的特性在里面可以看到如:

任务分片:

  将整体任务拆解为多个子任务

  可通过服务器的增减弹性伸缩任务处理能力

  分布式协调,任务服务器上下线的全自动发现与处理

容错性:

  支持定时自我故障检测与自动修复

  分布式任务分片唯一性保证

  支持失效转移和错过任务重触发

任务跟踪

任务调度

public interface JobFacade {
    
    /**
     * 读取作业配置.
     * 
     * @param fromCache 是否从缓存中读取
     * @return 作业配置
     */
    JobRootConfiguration loadJobRootConfiguration(boolean fromCache);
    
    /**
     * 检查作业执行环境.
     * 
     * @throws JobExecutionEnvironmentException 作业执行环境异常
     */
    void checkJobExecutionEnvironment() throws JobExecutionEnvironmentException;
    
    /**
     * 如果需要失效转移, 则执行作业失效转移.
     */
    void failoverIfNecessary();
    
    /**
     * 注册作业启动信息.
     *
     * @param shardingContexts 分片上下文
     */
    void registerJobBegin(ShardingContexts shardingContexts);
    
    /**
     * 注册作业完成信息.
     *
     * @param shardingContexts 分片上下文
     */
    void registerJobCompleted(ShardingContexts shardingContexts);
    
    /**
     * 获取当前作业服务器的分片上下文.
     *
     * @return 分片上下文
     */
    ShardingContexts getShardingContexts();
    
    /**
     * 设置任务被错过执行的标记.
     *
     * @param shardingItems 需要设置错过执行的任务分片项
     * @return 是否满足misfire条件
     */
    boolean misfireIfRunning(Collection<Integer> shardingItems);
    
    /**
     * 清除任务被错过执行的标记.
     *
     * @param shardingItems 需要清除错过执行的任务分片项
     */
    void clearMisfire(Collection<Integer> shardingItems);
    
    /**
     * 判断作业是否需要执行错过的任务.
     * 
     * @param shardingItems 任务分片项集合
     * @return 作业是否需要执行错过的任务
     */
    boolean isExecuteMisfired(Collection<Integer> shardingItems);
    
    /**
     * 判断作业是否符合继续运行的条件.
     * 
     * <p>如果作业停止或需要重分片或非流式处理则作业将不会继续运行.</p>
     * 
     * @return 作业是否符合继续运行的条件
     */
    boolean isEligibleForJobRunning();
    
    /**判断是否需要重分片.
     *
     * @return 是否需要重分片
     */
    boolean isNeedSharding();
    
    /**
     * 作业执行前的执行的方法.
     *
     * @param shardingContexts 分片上下文
     */
    void beforeJobExecuted(ShardingContexts shardingContexts);
    
    /**
     * 作业执行后的执行的方法.
     *
     * @param shardingContexts 分片上下文
     */
    void afterJobExecuted(ShardingContexts shardingContexts);
    
    /**
     * 发布执行事件.
     *
     * @param jobExecutionEvent 作业执行事件
     */
    void postJobExecutionEvent(JobExecutionEvent jobExecutionEvent);
    
    /**
     * 发布作业状态追踪事件.
     *
     * @param taskId 作业Id
     * @param state 作业执行状态
     * @param message 作业执行消息
     */
    void postJobStatusTraceEvent(String taskId, State state, String message);
}

2.JobDetail

通用的Job属性,定义在job.xsd

    <xsd:complexType name="base">
        <xsd:complexContent>
            <xsd:extension base="beans:identifiedType">
                <xsd:all>
                    <xsd:element ref="listener" minOccurs="0" maxOccurs="1" />
                    <xsd:element ref="distributed-listener" minOccurs="0" maxOccurs="1" />
                </xsd:all>
                <xsd:attribute name="class" type="xsd:string" />
                <xsd:attribute name="job-ref" type="xsd:string" />
                <xsd:attribute name="registry-center-ref" type="xsd:string" use="required" />
                <xsd:attribute name="cron" type="xsd:string" use="required" />
                <xsd:attribute name="sharding-total-count" type="xsd:string" use="required" />
                <xsd:attribute name="sharding-item-parameters" type="xsd:string" />
                <xsd:attribute name="job-parameter" type="xsd:string" />
                <xsd:attribute name="monitor-execution" type="xsd:string" default="true"/>
                <xsd:attribute name="monitor-port" type="xsd:string" default="-1"/>
                <xsd:attribute name="max-time-diff-seconds" type="xsd:string" default="-1"/>
                <xsd:attribute name="failover" type="xsd:string" default="false"/>
                <xsd:attribute name="reconcile-interval-minutes" type="xsd:int" default="10"/>
                <xsd:attribute name="misfire" type="xsd:string" default="true"/>
                <xsd:attribute name="job-sharding-strategy-class" type="xsd:string" />
                <xsd:attribute name="description" type="xsd:string" />
                <xsd:attribute name="disabled" type="xsd:string" default="false"/>
                <xsd:attribute name="overwrite" type="xsd:string" default="false"/>
                <xsd:attribute name="executor-service-handler" type="xsd:string" default="io.elasticjob.lite.executor.handler.impl.DefaultExecutorServiceHandler"/>
                <xsd:attribute name="job-exception-handler" type="xsd:string" default="io.elasticjob.lite.executor.handler.impl.DefaultJobExceptionHandler"/>
                <xsd:attribute name="event-trace-rdb-data-source" type="xsd:string" />
            </xsd:extension>
        </xsd:complexContent>
    </xsd:complexType>

其中Simple类型的任务完全继承通用属性,dataflow类型的任务增加了streaming-process属性,script增加了script-command-line属性

使用的解析器定义在spring.handlers

http\://www.dangdang.com/schema/ddframe/reg=io.elasticjob.lite.spring.reg.handler.RegNamespaceHandler
http\://www.dangdang.com/schema/ddframe/job=io.elasticjob.lite.spring.job.handler.JobNamespaceHandler

JobNamespaceHandler

/**
 * 分布式作业的命名空间处理器.
 * 
 * @author caohao
 */
public final class JobNamespaceHandler extends NamespaceHandlerSupport {
    
    @Override
    public void init() {
        registerBeanDefinitionParser("simple", new SimpleJobBeanDefinitionParser());
        registerBeanDefinitionParser("dataflow", new DataflowJobBeanDefinitionParser());
        registerBeanDefinitionParser("script", new ScriptJobBeanDefinitionParser());
    }
}

在弹性化分布式作业执行器AbstractElasticJobExecutor.java初始化时获取配置属性,并使用对应的Handler进行处理。

    protected AbstractElasticJobExecutor(final JobFacade jobFacade) {
        this.jobFacade = jobFacade;
        jobRootConfig = jobFacade.loadJobRootConfiguration(true);
        jobName = jobRootConfig.getTypeConfig().getCoreConfig().getJobName();
        executorService = ExecutorServiceHandlerRegistry.getExecutorServiceHandler(jobName, (ExecutorServiceHandler) getHandler(JobProperties.JobPropertiesEnum.EXECUTOR_SERVICE_HANDLER));
        jobExceptionHandler = (JobExceptionHandler) getHandler(JobProperties.JobPropertiesEnum.JOB_EXCEPTION_HANDLER);
        itemErrorMessages = new ConcurrentHashMap<>(jobRootConfig.getTypeConfig().getCoreConfig().getShardingTotalCount(), 1);
    }

3 执行作业

弹性化分布式作业执行器AbstractElasticJobExecutor.java

    /**
     * 执行作业.
     */
    public final void execute() {
        try {
            jobFacade.checkJobExecutionEnvironment();  //1 
        } catch (final JobExecutionEnvironmentException cause) {
            jobExceptionHandler.handleException(jobName, cause);
        }
        ShardingContexts shardingContexts = jobFacade.getShardingContexts();  //2
        if (shardingContexts.isAllowSendJobEvent()) {
            jobFacade.postJobStatusTraceEvent(shardingContexts.getTaskId(), State.TASK_STAGING, String.format("Job '%s' execute begin.", jobName));  //3
        }
        if (jobFacade.misfireIfRunning(shardingContexts.getShardingItemParameters().keySet())) {
            if (shardingContexts.isAllowSendJobEvent()) {
                jobFacade.postJobStatusTraceEvent(shardingContexts.getTaskId(), State.TASK_FINISHED, String.format(
                        "Previous job '%s' - shardingItems '%s' is still running, misfired job will start after previous job completed.", jobName, 
                        shardingContexts.getShardingItemParameters().keySet()));
            }
            return;
        }
        try {
            jobFacade.beforeJobExecuted(shardingContexts);       //4
            //CHECKSTYLE:OFF
        } catch (final Throwable cause) {
            //CHECKSTYLE:ON
            jobExceptionHandler.handleException(jobName, cause);
        }
        execute(shardingContexts, JobExecutionEvent.ExecutionSource.NORMAL_TRIGGER);  //5
        while (jobFacade.isExecuteMisfired(shardingContexts.getShardingItemParameters().keySet())) {
            jobFacade.clearMisfire(shardingContexts.getShardingItemParameters().keySet());
            execute(shardingContexts, JobExecutionEvent.ExecutionSource.MISFIRE);
        }
        jobFacade.failoverIfNecessary();                           //6
        try {
            jobFacade.afterJobExecuted(shardingContexts);          //7
            //CHECKSTYLE:OFF
        } catch (final Throwable cause) {
            //CHECKSTYLE:ON
            jobExceptionHandler.handleException(jobName, cause);
        }
    }

 3.1 环境监测

检查本机与注册中心的时间误差秒数是否在允许范围

    /**
     * 检查本机与注册中心的时间误差秒数是否在允许范围.
     * 
     * @throws JobExecutionEnvironmentException 本机与注册中心的时间误差秒数不在允许范围所抛出的异常
     */
    public void checkMaxTimeDiffSecondsTolerable() throws JobExecutionEnvironmentException {
        int maxTimeDiffSeconds =  load(true).getMaxTimeDiffSeconds();
        if (-1  == maxTimeDiffSeconds) {
            return;
        }
        long timeDiff = Math.abs(timeService.getCurrentMillis() - jobNodeStorage.getRegistryCenterTime());
        if (timeDiff > maxTimeDiffSeconds * 1000L) {
            throw new JobExecutionEnvironmentException(
                    "Time different between job server and register center exceed '%s' seconds, max time different is '%s' seconds.", timeDiff / 1000, maxTimeDiffSeconds);
        }
    }

3.2 根据分片规则进行分片

如果需要分片且当前节点为主节点, 则作业分片.

 如果当前无可用节点则不分片.

    /**
     * 如果需要分片且当前节点为主节点, 则作业分片.
     * 
     * <p>
     * 如果当前无可用节点则不分片.
     * </p>
     */
    public void shardingIfNecessary() {
        List<JobInstance> availableJobInstances = instanceService.getAvailableJobInstances();
        if (!isNeedSharding() || availableJobInstances.isEmpty()) {
            return;
        }
        if (!leaderService.isLeaderUntilBlock()) {
            blockUntilShardingCompleted();
            return;
        }
        waitingOtherShardingItemCompleted();
        LiteJobConfiguration liteJobConfig = configService.load(false);
        int shardingTotalCount = liteJobConfig.getTypeConfig().getCoreConfig().getShardingTotalCount();
        log.debug("Job '{}' sharding begin.", jobName);
        jobNodeStorage.fillEphemeralJobNode(ShardingNode.PROCESSING, "");
        resetShardingInfo(shardingTotalCount);
        JobShardingStrategy jobShardingStrategy = JobShardingStrategyFactory.getStrategy(liteJobConfig.getJobShardingStrategyClass());
        jobNodeStorage.executeInTransaction(new PersistShardingInfoTransactionExecutionCallback(jobShardingStrategy.sharding(availableJobInstances, jobName, shardingTotalCount)));
        log.debug("Job '{}' sharding complete.", jobName);
    }

3.3 使用EventBus通知

com.google.common.eventbus.EventBus

  /**
   * Posts an event to all registered subscribers.  This method will return
   * successfully after the event has been posted to all subscribers, and
   * regardless of any exceptions thrown by subscribers.
   *
   * <p>If no subscribers have been subscribed for {@code event}'s class, and
   * {@code event} is not already a {@link DeadEvent}, it will be wrapped in a
   * DeadEvent and reposted.
   *
   * @param event  event to post.
   */
  public void post(Object event) {
    Set<Class<?>> dispatchTypes = flattenHierarchy(event.getClass());

    boolean dispatched = false;
    for (Class<?> eventType : dispatchTypes) {
      subscribersByTypeLock.readLock().lock();
      try {
        Set<EventSubscriber> wrappers = subscribersByType.get(eventType);

        if (!wrappers.isEmpty()) {
          dispatched = true;
          for (EventSubscriber wrapper : wrappers) {
            enqueueEvent(event, wrapper);
          }
        }
      } finally {
        subscribersByTypeLock.readLock().unlock();
      }
    }

    if (!dispatched && !(event instanceof DeadEvent)) {
      post(new DeadEvent(this, event));
    }

    dispatchQueuedEvents();
  }

3.4 job预执行,监听ElasticJobListener

 

    @Override
    public void beforeJobExecuted(final ShardingContexts shardingContexts) {
        for (ElasticJobListener each : elasticJobListeners) {
            each.beforeJobExecuted(shardingContexts);
        }
    }

3.5 job执行

    private void execute(final ShardingContexts shardingContexts, final JobExecutionEvent.ExecutionSource executionSource) {
        if (shardingContexts.getShardingItemParameters().isEmpty()) {
            if (shardingContexts.isAllowSendJobEvent()) {
                jobFacade.postJobStatusTraceEvent(shardingContexts.getTaskId(), State.TASK_FINISHED, String.format("Sharding item for job '%s' is empty.", jobName));
            }
            return;
        }
        jobFacade.registerJobBegin(shardingContexts);//1
        String taskId = shardingContexts.getTaskId();
        if (shardingContexts.isAllowSendJobEvent()) {
            jobFacade.postJobStatusTraceEvent(taskId, State.TASK_RUNNING, "");
        }
        try {
            process(shardingContexts, executionSource);//2
        } finally {
            // TODO 考虑增加作业失败的状态,并且考虑如何处理作业失败的整体回路
            jobFacade.registerJobCompleted(shardingContexts);
            if (itemErrorMessages.isEmpty()) {
                if (shardingContexts.isAllowSendJobEvent()) {
                    jobFacade.postJobStatusTraceEvent(taskId, State.TASK_FINISHED, "");
                }
            } else {
                if (shardingContexts.isAllowSendJobEvent()) {
                    jobFacade.postJobStatusTraceEvent(taskId, State.TASK_ERROR, itemErrorMessages.toString());
                }
            }
        }
    }

  >>1.将job注册到注册中心

  >>2.将各个任务分片放到线程池中执行

3.6 实现转移

如果需要失效转移, 则执行作业失效转移.

    /**
     * 在主节点执行操作.
     * 
     * @param latchNode 分布式锁使用的作业节点名称
     * @param callback 执行操作的回调
     */
    public void executeInLeader(final String latchNode, final LeaderExecutionCallback callback) {
        try (LeaderLatch latch = new LeaderLatch(getClient(), jobNodePath.getFullPath(latchNode))) {
            latch.start();
            latch.await();
            callback.execute();
        //CHECKSTYLE:OFF
        } catch (final Exception ex) {
        //CHECKSTYLE:ON
            handleException(ex);
        }
    }

3.7 作业执行后处理

作业执行后的执行的方法

    @Override
    public void afterJobExecuted(final ShardingContexts shardingContexts) {
        for (ElasticJobListener each : elasticJobListeners) {
            each.afterJobExecuted(shardingContexts);
        }
    }

4.Trigger 

elasticJob默认使用Cron Trigger,在job属性里定义

  <xsd:attribute name="cron" type="xsd:string" use="required" />

5.作业调度器JobScheduler

    /**
     * 初始化作业.
     */
    public void init() {
        LiteJobConfiguration liteJobConfigFromRegCenter = schedulerFacade.updateJobConfiguration(liteJobConfig);  //1
        JobRegistry.getInstance().setCurrentShardingTotalCount(liteJobConfigFromRegCenter.getJobName(), liteJobConfigFromRegCenter.getTypeConfig().getCoreConfig().getShardingTotalCount());
        JobScheduleController jobScheduleController = new JobScheduleController(
                createScheduler(), createJobDetail(liteJobConfigFromRegCenter.getTypeConfig().getJobClass()), liteJobConfigFromRegCenter.getJobName()); //2
        JobRegistry.getInstance().registerJob(liteJobConfigFromRegCenter.getJobName(), jobScheduleController, regCenter);  //3
        schedulerFacade.registerStartUpInfo(!liteJobConfigFromRegCenter.isDisabled());
        jobScheduleController.scheduleJob(liteJobConfigFromRegCenter.getTypeConfig().getCoreConfig().getCron());   //4
    }
    
    private JobDetail createJobDetail(final String jobClass) {
        JobDetail result = JobBuilder.newJob(LiteJob.class).withIdentity(liteJobConfig.getJobName()).build();
        result.getJobDataMap().put(JOB_FACADE_DATA_MAP_KEY, jobFacade);
        Optional<ElasticJob> elasticJobInstance = createElasticJobInstance();
        if (elasticJobInstance.isPresent()) {
            result.getJobDataMap().put(ELASTIC_JOB_DATA_MAP_KEY, elasticJobInstance.get());
        } else if (!jobClass.equals(ScriptJob.class.getCanonicalName())) {
            try {
                result.getJobDataMap().put(ELASTIC_JOB_DATA_MAP_KEY, Class.forName(jobClass).newInstance());
            } catch (final ReflectiveOperationException ex) {
                throw new JobConfigurationException("Elastic-Job: Job class '%s' can not initialize.", jobClass);
            }
        }
        return result;
    }
    
    protected Optional<ElasticJob> createElasticJobInstance() {
        return Optional.absent();
    }
    
    private Scheduler createScheduler() {
        Scheduler result;
        try {
            StdSchedulerFactory factory = new StdSchedulerFactory();
            factory.initialize(getBaseQuartzProperties());
            result = factory.getScheduler();
            result.getListenerManager().addTriggerListener(schedulerFacade.newJobTriggerListener());
        } catch (final SchedulerException ex) {
            throw new JobSystemException(ex);
        }
        return result;
    }
    
    private Properties getBaseQuartzProperties() {
        Properties result = new Properties();
        result.put("org.quartz.threadPool.class", org.quartz.simpl.SimpleThreadPool.class.getName());
        result.put("org.quartz.threadPool.threadCount", "1");
        result.put("org.quartz.scheduler.instanceName", liteJobConfig.getJobName());
        result.put("org.quartz.jobStore.misfireThreshold", "1");
        result.put("org.quartz.plugin.shutdownhook.class", JobShutdownHookPlugin.class.getName());
        result.put("org.quartz.plugin.shutdownhook.cleanShutdown", Boolean.TRUE.toString());
        return result;
    }

5.1 更新作业配置.

    /**
     * 更新作业配置.
     *
     * @param liteJobConfig 作业配置
     * @return 更新后的作业配置
     */
    public LiteJobConfiguration updateJobConfiguration(final LiteJobConfiguration liteJobConfig) {
        configService.persist(liteJobConfig);
        return configService.load(false);
    }

5.2 初始化一系列操作

5.2.1 创建quartz scheduler

    private Scheduler createScheduler() {
        Scheduler result;
        try {
            StdSchedulerFactory factory = new StdSchedulerFactory();
            factory.initialize(getBaseQuartzProperties());
            result = factory.getScheduler();
            result.getListenerManager().addTriggerListener(schedulerFacade.newJobTriggerListener());
        } catch (final SchedulerException ex) {
            throw new JobSystemException(ex);
        }
        return result;
    }

5.2.2 创建JobDetail

    private JobDetail createJobDetail(final String jobClass) {
        JobDetail result = JobBuilder.newJob(LiteJob.class).withIdentity(liteJobConfig.getJobName()).build();
        result.getJobDataMap().put(JOB_FACADE_DATA_MAP_KEY, jobFacade);
        Optional<ElasticJob> elasticJobInstance = createElasticJobInstance();
        if (elasticJobInstance.isPresent()) {
            result.getJobDataMap().put(ELASTIC_JOB_DATA_MAP_KEY, elasticJobInstance.get());
        } else if (!jobClass.equals(ScriptJob.class.getCanonicalName())) {
            try {
                result.getJobDataMap().put(ELASTIC_JOB_DATA_MAP_KEY, Class.forName(jobClass).newInstance());
            } catch (final ReflectiveOperationException ex) {
                throw new JobConfigurationException("Elastic-Job: Job class '%s' can not initialize.", jobClass);
            }
        }
        return result;
    }
    

5.2.3 添加作业调度控制器.

    /**
     * 添加作业调度控制器.
     * 
     * @param jobName 作业名称
     * @param jobScheduleController 作业调度控制器
     * @param regCenter 注册中心
     */
    public void registerJob(final String jobName, final JobScheduleController jobScheduleController, final CoordinatorRegistryCenter regCenter) {
        schedulerMap.put(jobName, jobScheduleController);
        regCenterMap.put(jobName, regCenter);
        regCenter.addCacheData("/" + jobName);
    }

5.2.4 调度作业.

    /**
     * 调度作业.
     * 
     * @param cron CRON表达式
     */
    public void scheduleJob(final String cron) {
        try {
            if (!scheduler.checkExists(jobDetail.getKey())) {
                scheduler.scheduleJob(jobDetail, createTrigger(cron));
            }
            scheduler.start();
        } catch (final SchedulerException ex) {
            throw new JobSystemException(ex);
        }
    }

6.总结

  >>elastic-job使用了quartz的调度机制,内部原理一致,增加了性能和可用性。

  >>elastic-job使用注册中心(zookeeper)替换了quartz的jdbc数据存储方式,性能有较大提升。

 >> elastic-job增加了job的追踪(使用Listener),便于monitor

 >>elastic-job使用了分片机制,可以将job分成多个任务项,放到不同的地方执行

 >>elastic-job仅支持cronTrigger,quartz支持更多的trigger实现

 

版权声明:本文为davidwang456原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/davidwang456/p/10346013.html