量子隐形传态1 Quantum Teleportation
量子隐形传态是量子纠缠的又一个应用。
隐形传态,所谓隐形的意思就是没有物质介质就传递了信息,在经典世界,传递信息要有介质,光、电磁波或者其他的什么,但是在量子的世界里,我可以把信息传递给你,并且不传递任何一个量子比特。
量子不能克隆原理
不能克隆就是说,没有任何一个U操作,可以输入\(|\psi\rangle\) 和 \(|0\rangle\) 然后得到输出 \(|\psi\rangle\) 和 \(|\psi\rangle\) 。
why?
若是真的有这么一个操作算符,如图a,可以复制任意的量子比特 \(|u\rangle\) 我们希望的结果如下:
输入:\((\alpha_0 | 0\rangle +\alpha_1 | 1\rangle)|0\rangle\)
输出:\((\alpha_0 | 0\rangle +\alpha_1 | 1\rangle)(\alpha_0 | 0\rangle +\alpha_1 | 1\rangle)\)
另一方面
我们希望输入是\(|00\rangle\)输出也是\(|00\rangle\),当输入变成\(|10\rangle\)后,输出也就变成\(|11\rangle\)
而要以上两种情况相等,只有一种可能,即\(|u\rangle\)是\(|0\rangle\)或者\(|1\rangle\)的时候,但是这样,也就没有叠加态的,这样复制的,也就是一个普通的bit。
Teleportation CNOT
那么,如果要把一个自己不知道是什么状态的 \(|u\rangle=\alpha_0 | 0\rangle +\alpha_1 | 1\rangle\) 传递,要怎么办呢?
图b是前面介绍过的CNOT门,有CNOT门,我们很容易就可以把 \(\alpha_0 | 00\rangle +\alpha_1 | 10\rangle\)变成 \(\alpha_0 | 00\rangle +\alpha_1 | 11\rangle\) 。
此时并没有被复制,因为第一个比特和第二个比特之间还是纠缠的,也就是说你测量第一个比特,第二个就会坍缩,你测量第二个,第一个也同理,信息并没有copy两份,所以量子不可复制原理没有被打破。
接下来我们要来处理第一个比特。
如果直接测量第一个比特,很明显,第二个比特就坍缩了。
但是测量还是要测的,不过不是在 \(| 0\rangle\) 、 \(| 1\rangle\) 基,而是在 \(| +\rangle\) 、 \(| -\rangle\) 基。
\[\begin{align}|\psi\rangle&=\alpha_0|00\rangle + \alpha_1|11\rangle\\&=\alpha_0(\frac{1}{\sqrt2}|+\rangle + \frac{1}{\sqrt2}|-\rangle)|0\rangle+\alpha_1(\frac{1}{\sqrt2}|+\rangle – \frac{1}{\sqrt2}|-\rangle)|1\rangle\\&=\frac{1}{\sqrt2}|+\rangle(\alpha_0|0\rangle + \alpha_1|1\rangle)+\frac{1}{\sqrt2}|-\rangle(\alpha_0|0\rangle – \alpha_1|1\rangle) \end{align}\]
在 \(| +\rangle\) 、 \(| -\rangle\) 基对第一个比特测量:
如果测量的结果是 \(|+\rangle\) ,那么第二比特的状态就是 \(\alpha_0 | 0\rangle +\alpha_1 | 1\rangle\) ,正好是我们最初想要传递的态。
如果测量的结果是 \(|-\rangle\) ,那么第二比特的状态就是 \(\alpha_0 | 0\rangle -\alpha_1 | 1\rangle\) ,再经过Z门的翻转就是我们最初想要传递的态了。