100天搞定机器学习|Day11 实现KNN
import numpy as np import matplotlib.pyplot as plt import pandas as pd
dataset = pd.read_csv('../datasets/Social_Network_Ads.csv')
X = dataset.iloc[:, [2, 3]].values y = dataset.iloc[:, 4].values
fromsklearn.model_selectionimport train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =0.25, random_state=0)
from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test)
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors=5, metric ='minkowski', p =2) classifier.fit(X_train,y_train) KNeighborsClassifier(algorithm='auto',leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1,n_neighbors=5, p=2, weights='uniform')
y_pred = classifier.predict(X_test)
fromsklearn.metricsimport confusion_matrix cm = confusion_matrix(y_test, y_pred) print(cm)
print(classification_report(y_test, y_pred))