【0812 | Day 13】闭包函数/装饰器/迭代器

闭包函数

一、什么是闭包?

闭包指的是:函数内部函数对外部作用域而非全局作用域的引用。

def outter():
    x = 1

    def inner():
        print(x)
    return inner


f = outter()


def f2():
    x = 2
    f()


f2()

# 1
1.1 两种为函数传参的方式

为函数传参的方式一:使用参数的形式

def func(x):
    print(x)


func(1)
func(1)
func(1)

# 1
# 1
# 1

为函数传参的方式二:包给函数

def outter(x):
    x = 1

    def inner():
        print(x)
    return inner


f = outter(1)
f()
f()
f()
# 查看闭包的元素
print(F"f.__closure__[0].cell_contents: {f.__closure__[0].cell_contents}")

# 1
# 1
# 1
# f.__closure__[0].cell_contents: 1

举个栗子

def f2(x):
    def f1():
        print(x)
    return f1

f1_1 = f2(1) #返回f1 + 1
f1_1() #调用f1,传参x = 1

# 1

二、闭包函数的应用

闭包的意义:返回的函数对象,不仅仅是一个函数对象,在该函数外还包裹了一层作用域,这使得,该函数无论在何处调用,优先使用自己外层包裹的作用域。

应用一(复杂):

import requests


def get(url):
    res = requests.get(url)
    print(res)
    
get('https://www.baidu.com')
get('https://www.baidu.com')
get('https://www.baidu.com')
get('https://www.cnblogs.com/linhaifeng')
get('https://www.cnblogs.com/linhaifeng')
get('https://www.cnblogs.com/linhaifeng')

#https://www.baidu.com
#https://www.baidu.com
#https://www.baidu.com
#https://www.cnblogs.com/linhaifeng
#https://www.cnblogs.com/linhaifeng
#https://www.cnblogs.com/linhaifeng

应用二(闭包):

#爬取
import requests

def func(url):
    def get():
        res = requests.get(url)
        print(res.text)
    return get

baidu_spider = func('http://www.iqiyi.com/')
baidu_spider()

无参装饰器

装饰器指的是为被装饰器对象添加额外功能,就是定义一个函数,只不过该函数的功能是用来为其他函数添加额外的功能。

一、装饰器使用原则

装饰器的实现必须遵循两大原则:

  1. 不修改被装饰对象的源代码
  2. 不修改被装饰对象的调用方式

二、怎么用装饰器?

改变源代码(index内部代码块被改变):

import time


def index():
    start = time.time()
    print('welcome to index')
    time.sleep(1)
    end = time.time()
    print(F"index run time is {start-end}")


index()

#welcome to index
#index run time is -1.0008180141448975

编写重复代码(index( )和f2( )都调用,而且time代码重复):

import time


def index():
    print('welcome to index')
    time.sleep(1)


def f2():
    print('welcome to index')
    time.sleep(1)


start = time.time()
index()
end = time.time()
print(F"index run time is {start-end}")

start = time.time()
f2()
end = time.time()
print(F"f2 run time is {start-end}")

#welcome to index
#index run time is -1.0046868324279785
#welcome to index
#f2 run time is -1.000690221786499

三、两种传参方式

第一种传参方式:改变调用方式

import time


def index():
    print('welcome to index')
    time.sleep(1)

    
def time_count(func):
    start = time.time()
    func()  #func()=index(),打印'welcome to index'
    end = time.time()
    print(f"{func} time is {start-end}")  #打印

    
time_count(index) #运行time_count(),同时传参给func

#welcome to index
#<function index at 0x102977378> time is -1.000748872756958

第二种传参方式:包给函数-外包

import time


def index():
    print('welcome to index')
    time.sleep(1)


def time_count(func):
    # func = 最原始的index
    def wrapper():
        start = time.time()
        func()
        end = time.time()
        print(f"{func} time is {start-end}")
    return wrapper

# f = time_count(index)
# f()


index = time_count(index)  # index被重新定义,原来的index被覆盖,即index = wrapper,func = index
index()  # wrapper()

#依旧是以index()方式调用

#welcome to index
#<function index at 0x102977730> time is -1.0038220882415771

四、完善装饰器

上述的装饰器,最后调用index()的时候,其实是在调用wrapper(),因此如果原始的index()有返回值的时候,wrapper()函数的返回值应该和index()的返回值相同,也就是说,我们需要同步原始的index()和wrapper()方法的返回值。

import time


def index():
    print('welcome to index')
    time.sleep(1)

    return 123


def time_count(func):
    # func = 最原始的index
    def wrapper():
        start = time.time()
        res = func()
        end = time.time()
        print(f"{func} time is {start-end}")

        return res
    return wrapper


index = time_count(index)  #index = wapper, func = index
res = index() #wapper(index)
print(f"res: {res}")

#welcome to index
#<function index at 0x102977620> time is -1.0050289630889893
#res: 123

如果原始的index()方法需要传参,那么我们之前的装饰器是无法实现该功能的,由于有wrapper()=index(),所以给wrapper()方法传参即可。

import time


def index():
    print('welcome to index')
    time.sleep(1)

    return 123


def home(name):
    print(f"welcome {name} to home page")
    time.sleep(1)

    return name


def time_count(func):
    # func = 最原始的index
    def wrapper(*args, **kwargs):
        start = time.time()
        res = func(*args, **kwargs)
        end = time.time()
        print(f"{func} time is {start-end}")

        return res
    return wrapper


home = time_count(home) #func = home, home = wrapper
res = home('egon')  #wrapper('egon') = fun('egon') = home('egon') = 'welcome egon to home page' = 'egon'
print(f"res: {res}")  # res = func('egon') = home('egon') = 'egon' 

#welcome egon to home page
#<function home at 0x102977378> time is -1.0039079189300537
#res: egon

五、装饰器语法糖

在被装饰函数正上方,并且是单独一行写上@装饰器名

import time


def time_count(func):
    # func = 最原始的index
    def wrapper(*args, **kwargs):
        start = time.time()
        res = func(*args, **kwargs)
        end = time.time()
        print(f"{func} time is {start-end}")

        return res
    return wrapper


@time_count  # home = time_count(home)
def home(name):
    print(f"welcome {name} to home page")
    time.sleep(1)

    return name


@time_count  # index = time_count(index)
def index():
    print('welcome to index')
    time.sleep(1)

    return 123


res = home('egon')  #func = home name = 'egon' --> welcome egon to home page --> print(f"{func} time is {start-end}")
print(f"res: {res}") # egon

#welcome egon to home page
#<function home at 0x102977620> time is -1.0005171298980713
#res: egon

六、装饰器模板(重要)

def deco(func):
    def wrapper(*args,**kwargs):
        res = func(*args,**kwargs)
        return res
    return wrapper

有参装饰器

无参装饰器套了两层有参装饰器套了三层

import time

current_user = {'username': None}


def login(func):
    # func = 最原始的index
    def wrapper(*args, **kwargs):
        if current_user['username']:
            res = func(*args, **kwargs)

            return res

        user = input('username: ').strip()
        pwd = input('password: ').strip()

        if user == 'nick' and pwd == '123':
            print('login successful')
            current_uesr['usre'] = user
            res = func(*args, **kwargs)

            return res
        else:
            print('user or password error')

    return wrapper


@login  #home = login(home)
def home(name):
    print(f"welcome {name} to home page")
    time.sleep(1)

    return name


@login  #index = login(index)  
def index():
    print('welcome to index')
    time.sleep(1)

    return 123


res = index() #运行index之前运行糖果 wrapper(index) 继续运行 返回res = func 继续运行 即真正的index()

#username: nick
#password: 123
#login successful
#welcome to index

对于上面的登录注册,我们把用户登录成功的信息写入内存当中。但是在工业上,用户信息可以存在文本中、mysql中、mongodb当中,但是我们只让用户信息来自于file的用户可以认证。因此我们可以改写上述的装饰器。

import time

current_user = {'username': None}


def login(func):
    # func = 最原始的index
    def wrapper(*args, **kwargs):

        if current_user['username']:
            res = func(*args, **kwargs)

            return res

        user = input('username: ').strip()
        pwd = input('password: ').strip()
        
        engine = 'file'

        if engine == 'file':
            print('base of file')
            if user == 'nick' and pwd == '123':
                print('login successful')
                current_uesr['usre'] = user
                res = func(*args, **kwargs)

                return res
            else:
                print('user or password error')
        elif engine == 'mysql':
            print('base of mysql')
        elif engine == 'mongodb':
            print('base of mongodb')
        else:
            print('default')

    return wrapper


@login
def home(name):
    print(f"welcome {name} to home page")
    time.sleep(1)


@login
def index():
    print('welcome to index')
    time.sleep(1)


res = index()

#username: nick
#password: 123
#base of file
#login successful
#welcome to index

一、三层闭包

def f1(y):

    def f2():
        x = 1

        def f3():
            print(f"x: {x}")
            print(f"y: {y}")
            return f3
        return f2


f2 = f1(2) #f2(y = 2)
f3 = f2()  #x = 1
f3()  #到外部找x, y  

#倒着运行--->先找x, y--->找到x = 1--->y = 2--->结果输出

#x: 1
#y: 2

现在需求改了,我们需要判断用户动态的获取用户密码的方式,如果是file类型的,我们则让用户进行认证。因此我们可以使用有参装饰器。

import time

current_uesr = {'username': None}


def auth(engine='file'):

    def login(func):
        # func = 最原始的index
        def wrapper(*args, **kwargs):

            if current_user['username']:
                res = func(*args, **kwargs)

                return res

            user = input('username: ').strip()
            pwd = input('password: ').strip()

            if engine == 'file':
                print('base of file')
                if user == 'nick' and pwd == '123':
                    print('login successful')
                    current_uesr['usre'] = user
                    res = func(*args, **kwargs)

                    return res
                else:
                    print('user or password error')
            elif engine == 'mysql':
                print('base of mysql, please base of file')
            elif engine == 'mongodb':
                print('base of mongodb, please base of file')
            else:
                print('please base of file')

            return wrapper

        return login


@auth(engine='mysql')
def home(name):
    print(f"welcome {name} to home page")
    time.sleep(1)


@auth(engine='file')
def index():
    print('welcome to index')
    time.sleep(1)


res = index()  

#username: nick
#password: 123
#base of file
#login successful
#welcome to index

注意:由于两层的装饰器,参数必须得固定位func,但是三层的装饰器解除了这个限制。我们不仅仅可以使用上述单个参数的三层装饰器,多个参数的只需要在三层装饰器中多加入几个参数即可。也就是说装饰器三层即可,多加一层反倒无用。

迭代器

迭代器:迭代的工具。

迭代是更新换代,比如你子孙繁衍;迭代也可以说成是重复,但每一次的重复都是基于上一次的结果来的,例如计算机中的迭代开发,就是基于软件的上一个版本更新。

以下代码就不是迭代,它只是单纯的重复

while True:
    print('*'*10)

一、可迭代对象

定义:具有__iter__方法的对象就是可迭代对象,除了数字类型和函数类型。

注意:tuple(1)与tuple(1,)类型有区别

# x = 1.__iter__  # SyntaxError: invalid syntax

# 以下都是可迭代的对象

name = 'nick'.__iter__
lis = [1, 2].__iter__
tup = (1, 2).__iter__
dic = {'name': 'nick'}.__iter__
s1 = {'a', 'b'}.__iter__
f = open('49w.txt', 'w', encoding='utf-8')
f.__iter__
f.close()

二、迭代器对象

只有字符串列表都是依赖索引取值的,而其他的可迭代对象都是无法依赖索引取值的。因此我们得找到一个方法能让其他的可迭代对象不依赖索引取值。

定义:具有__iter____next__方法的都是迭代器对象,只有文件

缺点:

  1. 取值麻烦,只能一个一个取,并且只能往后取,值取了就没了
  2. 无法使用len()方法获取长度
# 不依赖索引的数据类型迭代取值
dic = {'a': 1, 'b': 2, 'c': 3}
iter_dic = dic.__iter__()
print(iter_dic.__next__())
print(iter_dic.__next__())
print(iter_dic.__next__())
# print(iter_dic.__next__())  # StopIteration:

#a
#b
#c

# 依赖索引的数据类型迭代取值
lis = [1, 2, 3]
iter_lis = lis.__iter__()
print(iter_lis.__next__())
print(iter_lis.__next__())
print(iter_lis.__next__())
# print(iter_lis.__next__())  # StopIteration:

#1
#2
#3

上述的方法是非常繁琐的,我们可以使用while循环精简下。其中使用的try...except...为异常处理模块

#for循环原理

lt = [1,2,3]

lt_iter = lt.__iter__()
while 1:
    try:
        print(lt_iter.__next__())
    except StopIteration:
        break

注意一:迭代器对象一定是可迭代对象,可迭代对象不一定是迭代器对象

注意二:for循环 == 迭代循环

**注意三:迭代器对象使用__iter__()还是迭代器对象**

版权声明:本文为fxyadela原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/fxyadela/p/11341122.html