什么是ACL(Access Control List)

zookeeper在分布式系统中承担中间件的作用,它管理的每一个节点上可能都存储这重要的信息,因为应用可以读取到任意节点,这就可能造成安全问题,ACL的作用就是帮助zookeeper实现权限控制, 比如对节点的增删改查

点击查上篇博客中客户端使用acl的详解

addAuth客户端源码追踪入口

通过前几篇博客的追踪我们知道了,客户端启动三条线程,如下

  • 守护线程 sendThread 负责客户端和服务端的IO通信
  • 守护线程 EventThread 负责处理服务端和客户端有关事务的事件
  • 主线程 负责解析处理用户在控制台的输入

所以本篇博客的客户端入口选取的是客户端的主程序processZKCmd(MyCommandOptions co), 源码如下

protected boolean processZKCmd(MyCommandOptions co) throws KeeperException, IOException, InterruptedException {
        // todo 在这个方法中可以看到很多的命令行所支持的命令
        Stat stat = new Stat();
        // todo 获取命令行输入中 0 1 2 3 ... 位置的内容, 比如 0 位置是命令  1 2 3 位置可能就是不同的参数
        String[] args = co.getArgArray();
        String cmd = co.getCommand();
        if (args.length < 1) {
            usage();
            return false;
        }

        if (!commandMap.containsKey(cmd)) {
            usage();
            return false;
        }

        boolean watch = args.length > 2;
        String path = null;
        List<ACL> acl = Ids.OPEN_ACL_UNSAFE;
        LOG.debug("Processing " + cmd);

        if (cmd.equals("quit")) {
            System.out.println("Quitting...");
            zk.close();
            System.exit(0);
        }
       .
       .
       .
       .
        } else if (cmd.equals("addauth") && args.length >= 2) {
            byte[] b = null;
            if (args.length >= 3)
                b = args[2].getBytes();

            zk.addAuthInfo(args[1], b);
        } else if (!commandMap.containsKey(cmd)) {
            usage();
        }
        return watch;
    }

假如说我们是想在服务端的上下文中添加一个授权的信息, 假设我们这样写addauth digest lisi:123123,这条命令经过主线程处理之后就来到上述源码的else if (cmd.equals("addauth") && args.length >= 2)部分, 然后调用了ZooKeeper.java的zk.addAuthInfo(args[1], b); 源码如下:

 public void addAuthInfo(String scheme, byte auth[]) {
        cnxn.addAuthInfo(scheme, auth);
    }

继续跟进CLientCnxnaddAuthInfo()方法,源码如下 它主要做了两件事:

  • 将seheme + auth 进行了封装
  • 然后将seheme + auth 封装进了封装进Request,在经过queuePacket()方法封装进packet,添加到outgoingQueue中等待sendThread将其消费发送服务端
public void addAuthInfo(String scheme, byte auth[]) {
    if (!state.isAlive()) {
        return;
    }
    // todo 将用户输入的权限封装进 AuthData
    // todo 这也是ClientCnxn的内部类
    authInfo.add(new AuthData(scheme, auth));

    // todo 封装进一个request中
    queuePacket(new RequestHeader(-4, OpCode.auth), null,
            new AuthPacket(0, scheme, auth), null, null, null, null,
            null, null);
}

addAuth服务端的入口

在服务端去处理客户端请求的是三个Processor 分别是:

  • PrepRequestProcessor 负责更新状态
  • SyncRequestProcessor 同步处理器,主要负责将事务持久化
  • FinalRequestProcessor 主要负责响应客户端

服务端选取的入口是 NIOServerCnxn.javareadRequest(), 源码如下:

// todo 解析客户端传递过来的packet
private void readRequest() throws IOException {
    // todo ,跟进去看zkserver 如何处理packet
    zkServer.processPacket(this, incomingBuffer);
}

继续跟进processPacket(),源码如下:

虽然这段代码也挺长的,但是它的逻辑很清楚,

  • 将客户端发送过来的数据反序列化进new出来的RequestHeader
  • 跟进RequestHeader判断是否需要auth鉴定
    • 需要:
      • 创建AuthPacket对象,将数据反序列化进它里面
      • 使用AuthenticationProvider进行权限验证
      • 如果成功了返回KeeperException.Code.OK其他的状态是抛出异常中断操作
    • 不需要
      • 将客户端端发送过来的数据封装进Request
      • 将Request扔向请求处理链进一步处理

AuthenticationProvider

其中AuthenticationProvider在这里设计的很好,他是个接口,针对不同的schme它有不同的实现子类,这样当前的ap.handleAuthentication(cnxn, authPacket.getAuth()); 一种写法,就可以实现多种不同的动作

   // todo  在ZKserver中解析客户端发送过来的request
    public void processPacket(ServerCnxn cnxn, ByteBuffer incomingBuffer) throws IOException {
        // We have the request, now process and setup for next
        // todo 从bytebuffer中读取数据, 解析封装成 RequestHeader
        InputStream bais = new ByteBufferInputStream(incomingBuffer);
        BinaryInputArchive bia = BinaryInputArchive.getArchive(bais);
        RequestHeader h = new RequestHeader();
        // todo 对RequestHeader 进行反序列化
        h.deserialize(bia, "header");

        // Through the magic of byte buffers, txn will not be pointing  to the start of the txn
        // todo
        incomingBuffer = incomingBuffer.slice();
        // todo 对应用户在命令行敲的 addauth命令
        // todo 这次专程为了 探究auth而来
        if (h.getType() == OpCode.auth) {
            LOG.info("got auth packet " + cnxn.getRemoteSocketAddress());
            // todo 创建AuthPacket,将客户端发送过来的数据反序列化进 authPacket对象中
            /**  下面的authPacket的属性
             *   private int type;
             *   private String scheme;
             *   private byte[] auth;
             */
            AuthPacket authPacket = new AuthPacket();
            ByteBufferInputStream.byteBuffer2Record(incomingBuffer, authPacket);


            String scheme = authPacket.getScheme();
            AuthenticationProvider ap = ProviderRegistry.getProvider(scheme);

            Code authReturn = KeeperException.Code.AUTHFAILED;
            if(ap != null) {
                try {
                    // todo 来到这里进一步处理, 跟进去
                    // todo AuthenticationProvider 有很多三个实现实现类, 分别处理不同的 Auth , 我们直接跟进去digest类中
                    authReturn = ap.handleAuthentication(cnxn, authPacket.getAuth());
                } catch(RuntimeException e) {
                    LOG.warn("Caught runtime exception from AuthenticationProvider: " + scheme + " due to " + e);
                    authReturn = KeeperException.Code.AUTHFAILED;                   
                }
            }
            if (authReturn!= KeeperException.Code.OK) {
                if (ap == null) {
                    LOG.warn("No authentication provider for scheme: "
                            + scheme + " has "
                            + ProviderRegistry.listProviders());
                } else {
                    LOG.warn("Authentication failed for scheme: " + scheme);
                }
                // send a response...
                ReplyHeader rh = new ReplyHeader(h.getXid(), 0,
                        KeeperException.Code.AUTHFAILED.intValue());
                cnxn.sendResponse(rh, null, null);
                // ... and close connection
                cnxn.sendBuffer(ServerCnxnFactory.closeConn);
                cnxn.disableRecv();
            } else {
                if (LOG.isDebugEnabled()) {
                    LOG.debug("Authentication succeeded for scheme: "
                              + scheme);
                }
                LOG.info("auth success " + cnxn.getRemoteSocketAddress());
                ReplyHeader rh = new ReplyHeader(h.getXid(), 0,
                        KeeperException.Code.OK.intValue());
                cnxn.sendResponse(rh, null, null);
            }
            return;
        } else {
            if (h.getType() == OpCode.sasl) {
                Record rsp = processSasl(incomingBuffer,cnxn);
                ReplyHeader rh = new ReplyHeader(h.getXid(), 0, KeeperException.Code.OK.intValue());
                cnxn.sendResponse(rh,rsp, "response"); // not sure about 3rd arg..what is it?
                return;
            }
            else {
                // todo 将上面的信息包装成 request
                Request si = new Request(cnxn, cnxn.getSessionId(), h.getXid(), h.getType(), incomingBuffer, cnxn.getAuthInfo());
                si.setOwner(ServerCnxn.me);
                // todo 提交request, 其实就是提交给服务端的 process处理器进行处理
                submitRequest(si);
            }
        }
        cnxn.incrOutstandingRequests(h);
    }

因为我们的重点是查看ACL的实现机制,所以继续跟进 ap.handleAuthentication(cnxn, authPacket.getAuth());(选择DigestAuthenticationProvier的实现) 源码如下:

这个方法算是核心方法, 主要了做了如下几件事

  • 我们选择的是Digest模式,针对用户的输入 lisi:123123 这部分信息生成数字签名
  • 如果这个用户是超级用户的话,在ServerCnxn维护的authInfo中添加super : '' 比较是超级管理员
  • 将当前的信息封装进Id对象,添加到 authInfo
  • 认证成功?
    • 返回KeeperException.Code.OK;
  • 认证失败
    • 返回KeeperException.Code.AUTHFAILED;
  public KeeperException.Code
    handleAuthentication(ServerCnxn cnxn, byte[] authData) {
        String id = new String(authData);
        try {
            // todo 生成一个签名,  跟进去看看下 签名的处理步骤, 就在上面
            String digest = generateDigest(id);
            if (digest.equals(superDigest)) { // todo 从这个可以看出, zookeeper是存在超级管理员用户的, 跟进去看看 superDigest 其实就是读取配置文件得来的
               //todo 满足这个条件就会在这个list中多存一个权限
                cnxn.addAuthInfo(new Id("super", ""));
            }
            // todo 将scheme + digest 添加到cnxn的AuthInfo中 ,
            cnxn.addAuthInfo(new Id(getScheme(), digest));
            // todo 返回认证成功的标识
            return KeeperException.Code.OK;
        } catch (NoSuchAlgorithmException e) {
            LOG.error("Missing algorithm", e);
        }
        return KeeperException.Code.AUTHFAILED;
    }

authInfo有啥用?

它其实是一个List数组,存在于内存中,一旦客户端关闭了这个数组中存放的内容就全部丢失了

一般我们是这么玩的,比如,我们创建了一个node,但是不想让任何一个人都能访问他里面的数据,于是我们就他给添加一组ACL权限, 就像下面这样

# 创建节点
[zk: localhost:2181(CONNECTED) 0] create /node2 2
Created /node2

# 添加一个用户
[zk: localhost:2181(CONNECTED) 1] addauth digest lisi:123123
# 给这个node2节点设置一个;lisi的用户,只有这个lisi才拥有node的全部权限
[zk: localhost:2181(CONNECTED) 2] setAcl /node2 auth:lisi:cdrwa
cZxid = 0x2d7
ctime = Fri Sep 27 08:19:58 CST 2019
mZxid = 0x2d7
mtime = Fri Sep 27 08:19:58 CST 2019
pZxid = 0x2d7
cversion = 0
dataVersion = 0
aclVersion = 1
ephemeralOwner = 0x0
dataLength = 1
numChildren = 0

[zk: localhost:2181(CONNECTED) 3] getAcl /node2
'digest,'lisi:dcaK2UREXUmcqg6z9noXkh1bFaM=
: cdrwa

这时候断开客户端的连接, 打开一个新的连接,重试get

# 会发现已经没有权限了
[zk: localhost:2181(CONNECTED) 1] getAcl /node2
Authentication is not valid : /node2

# 重新添加auth
[zk: localhost:2181(CONNECTED) 2] addauth digest lisi:123123
[zk: localhost:2181(CONNECTED) 3] getAcl /node2
'digest,'lisi:dcaK2UREXUmcqg6z9noXkh1bFaM=
: cdrwa

可以看到,经过本轮操作后,node2节点有了已经被持久化的特征,lisi才能对他有全部权限,这么看addauth digest lisi:123123就有点添加了一个用户的概念,只不过这个信息最终会存放在上面提到的authInfo中, 这也是为啥一旦重启了,想要访问得重新添加权限的原因

言归正传,接着看上面的函数,我们看它是如何进行签名的, 拿lisi:123123举例子

  • 使用:分隔
  • 将后半部分的123123经过SHA1加密
  • 再进行BASE64加密
  • 最后拼接 lisi:sugsduyfgyuadgfuyadadfgba…
// todo 签名的处理步骤
static public String generateDigest(String idPassword)
        throws NoSuchAlgorithmException {
    //todo 根据: 分隔
    String parts[] = idPassword.split(":", 2);
    //todo 先用SHA1进行加密
    byte digest[] = MessageDigest.getInstance("SHA1").digest(
            idPassword.getBytes());
    //todo 再用BASE64进行加密
    // todo  username:签名
    return parts[0] + ":" + base64Encode(digest);
}

加密完成后有样的判断,证明zookeeper中是有超级管理员角色存在的

if (digest.equals(superDigest)) { // todo 从这个可以看出, zookeeper是存在超级管理员用户的, 跟进去看看 superDigest 其实就是读取配置文件得来的
       //todo 满足这个条件就会在这个list中多存一个权限
        cnxn.addAuthInfo(new Id("super", ""));
    }

点击superDisgest,他是这样介绍的

    /** specify a command line property with key of 
     * "zookeeper.DigestAuthenticationProvider.superDigest"
     * and value of "super:<base64encoded(SHA1(password))>" to enable
     * super user access (i.e. acls disabled)
     */
    // todo  在命令行中指定 key = zookeeper.DigestAuthenticationProvider.superDigest
    // todo            指定value = super:<base64encoded(SHA1(password))>
    // todo   就可以开启超级管理员用户
    private final static String superDigest = System.getProperty(
            "zookeeper.DigestAuthenticationProvider.superDigest");

小结:

到目前为止,我们就知道了addauth在底层源码做出了哪些动作,以及服务端将我们手动添加进来的权限信息都放在内存中


getACL源码追踪入口

同样会和addAuth操作一样,主线程从控制台解析出用户的请求封装进request然后封装进pakcet发送给服务端

getACL服务端的处理逻辑

请求来到服务端,在遇到第一次checkAcl之间,请求会顺利的来到第一个处理器PrepRequestProcessor, 所以我们的入口点就是这里

    protected void pRequest(Request request) throws RequestProcessorException {
        // LOG.info("Prep>>> cxid = " + request.cxid + " type = " +
        // request.type + " id = 0x" + Long.toHexString(request.sessionId));
        request.hdr = null;
        request.txn = null;
    // todo 下面的不同类型的信息, 对应这不同的处理器方式
    try {
        switch (request.type) {
            case OpCode.create:
                // todo 创建每条记录对应的bean , 现在还是空的, 在面的pRequest2Txn 完成赋值
            CreateRequest createRequest = new CreateRequest();
            // todo 跟进这个方法, 再从这个方法出来,往下运行,可以看到调用了下一个处理器
            pRequest2Txn(request.type, zks.getNextZxid(), request, createRequest, true);
            break;
        case OpCode.delete:
            DeleteRequest deleteRequest = new DeleteRequest();               
            pRequest2Txn(request.type, zks.getNextZxid(), request, deleteRequest, true);
            break;
        case OpCode.setData:
            SetDataRequest setDataRequest = new SetDataRequest();                
            pRequest2Txn(request.type, zks.getNextZxid(), request, setDataRequest, true);
            break;
        case OpCode.setACL:
            // todo 客户端发送的setAcl命令, 会流经这个选项
            SetACLRequest setAclRequest = new SetACLRequest();
            /**  SetACLRequest的属性
             *   private String path;
             *   private java.util.List<org.apache.zookeeper.data.ACL> acl;
             *   private int version;
             */
            // todo 继续跟进去
            pRequest2Txn(request.type, zks.getNextZxid(), request, setAclRequest, true);
            break;
        case OpCode.check:

用户在控制台输入类似 setAcl /node4 digest:zhangsan:jA/7JI9gsuLp0ZQn5J5dcnDQkHA= 请求将被解析运行到上面的case OpCode.setACL: 它new了一个空的对象SetACLRequest,这个对象一会在pRequest2Txn()函数中进行初始化

继续跟进pRequest2Txn(request.type, zks.getNextZxid(), request, setAclRequest, true);
源码如下: 它的解析我写在这段代码的下面

    protected void pRequest2Txn(int type, long zxid, Request request, Record record, boolean deserialize)
        throws KeeperException, IOException, RequestProcessorException
    {
        // todo 使用request的相关属性,创建出 事务Header
        request.hdr = new TxnHeader(request.sessionId, request.cxid, zxid,
                                    Time.currentWallTime(), type);

        switch (type) {
            case OpCode.create:
                // todo 校验session的情况
                zks.sessionTracker.checkSession(request.sessionId, request.getOwner());
                CreateRequest createRequest = (CreateRequest)record;  
                .
                .
                .
            case OpCode.setACL:
                // todo 检查session的合法性
                zks.sessionTracker.checkSession(request.sessionId, request.getOwner());
                // todo record; 上一步中new 出来的SetACLRequest空对象,
                // todo 这样设计的好处就是, 可以进行横向的扩展, 让当前这个方法 PRequest2Tm()中可以被Record的不同实现类复用
                SetACLRequest setAclRequest = (SetACLRequest)record;
               // todo 将结果反序列化进 setAclRequest
                if(deserialize)
                    ByteBufferInputStream.byteBuffer2Record(request.request, setAclRequest);

                // todo 获取path 并校验
                path = setAclRequest.getPath();
                validatePath(path, request.sessionId);

                // todo 去除重复的acl
                listACL = removeDuplicates(setAclRequest.getAcl());
                if (!fixupACL(request.authInfo, listACL)) {
                    // todo request.authInfo的默认值就是本地ip, 如果没有这个值的话,在server本地,client都连接不上
                    throw new KeeperException.InvalidACLException(path);
                }
                //todo  获取当前节点的record
                nodeRecord = getRecordForPath(path);
                // todo 共用的checkACL 方法
                // todo  在setAcl时,使用checkACL进行权限的验证
                // todo  nodeRecord.acl 当前节点的acl
                // todo 跟进这个方法
                checkACL(zks, nodeRecord.acl, ZooDefs.Perms.ADMIN,
                        request.authInfo);
                version = setAclRequest.getVersion();
                currentVersion = nodeRecord.stat.getAversion();
                if (version != -1 && version != currentVersion) {
                    throw new KeeperException.BadVersionException(path);
                }
                version = currentVersion + 1;
                request.txn = new SetACLTxn(path, listACL, version);
                nodeRecord = nodeRecord.duplicate(request.hdr.getZxid());
                nodeRecord.stat.setAversion(version);
                addChangeRecord(nodeRecord);
                break;
            // todo     createSession/////////////////////////////////////////////////////////////////
            case OpCode.createSession:
            .
            .
            .
  • 先说一下有个亮点, 就是这个函数中倒数第二个参数位置写着需要的参数是record类型的,但是实际上我们传递进来的类型是SetACLRequest上面的这个空对象SetACLRequest这样的设计使得的扩展性变得超级强

这是record的类图

record

言归正传,来到这个函数算是进入了第二个高潮, 他主要做了这几件事

  • 检查session是否合法
  • 将数据反序列化进 SetACLRequest
  • 校验path是否合法
  • 去除重复的acl
  • CheckAcl鉴权

我们重点看最后两个地方

去除重复的acl

fixupACL(request.authInfo, listACL)

这个函数很有趣,举个例子,通过控制台,我们连接上一个服务端,然后通过如下命令往服务端的authInfo集合中添加三条数据

addauth digest lisi1:1 
addauth digest lisi2:2
addauth digest lisi3:3

然后给lisi授予针对node1的权限

setAcl /node auth:lisi1:123123:adr

在此查看,会发现lisi2 lisi3同样有了对node1的权限

CheckAcl鉴权

checkACL(zks, nodeRecord.acl, ZooDefs.Perms.ADMIN,request.authInfo); 源码如下:

这个函数的主要逻辑就是,从头到尾的执行,只要满足了合法的权限就退出,否则运行到最后都没有合法的权限,就抛出没有授权的异常从而中断请求,如果正常返回了,说明权限经过了验证,既然经过了验证request就可以继续在process链上运行,进一步进行处理

  static void checkACL(ZooKeeperServer zks, List<ACL> acl, int perm,
            List<Id> ids) throws KeeperException.NoAuthException {
        // todo 这是个写在配置文件中的 配置属性 zookeeper.skipACL , 可以关闭acl验证
        if (skipACL) {
            return;
        }
        // todo 当前的节点没有任何验证的规则的话,直接通过
        if (acl == null || acl.size() == 0) {
            return;
        }
        // todo 如果ids中存放着spuer 超级用户,也直接通过
        for (Id authId : ids) {
            if (authId.getScheme().equals("super")) {
                return;
            }
        }
        // todo 循环当前节点上存在的acl点
        for (ACL a : acl) {
            Id id = a.getId();
            // todo 使用& 位运算  , 去ZooDefs类看看位移的情况
            // todo  如果设置的权限为 a.getPerms() =dra = d+r+a = 8+1+16 = 25
            // todo   perm = 16
            /**
             *  进行&操作
             *  25 & 16
             *  11001
             *  10000
             *   结果
             *  10000
             *  结果不是0 ,进入if { }
             */
            if ((a.getPerms() & perm) != 0) {
                if (id.getScheme().equals("world")
                        && id.getId().equals("anyone")) {
                    return;
                }

                AuthenticationProvider ap = ProviderRegistry.getProvider(id.getScheme());

                if (ap != null) {
                    for (Id authId : ids) {                        
                        if (authId.getScheme().equals(id.getScheme())
                                && ap.matches(authId.getId(), id.getId())) {
                            return;
                        }
                    }
                }
            }
        }
        //todo  到最后也没返回回去, 就抛出异常
        throw new KeeperException.NoAuthException();
    }

几个重要的参数

  • acl
    • 当前node已经存在的 需要的权限信息scheme:id;
  • perm
    • 当前用户的操作需要的权限
  • ids
    • 我们在上面通过addauth添加进authInfo列表中的信息
  • skip跳过权限验证
  static boolean skipACL;
    static {
        skipACL = System.getProperty("zookeeper.skipACL", "no").equals("yes");
        if (skipACL) {
            LOG.info("zookeeper.skipACL==\"yes\", ACL checks will be skipped");
        }
    }

这里面在验证权限时存在位运算,prem在ZooDFS.java中维护

// todo 位移的操作
@InterfaceAudience.Public
public interface Perms {
    // 左移
    int READ = 1 << 0;   //1      2的0次方

    int WRITE = 1 << 1;    //2    2的1次方

    int CREATE = 1 << 2;   // 4

    int DELETE = 1 << 3;  // 8

    int ADMIN = 1 << 4;  // 16

    int ALL = READ | WRITE | CREATE | DELETE | ADMIN;  //31

    /**
     *      00001
     *      00010
     *      00100
     *      01000
     *      10000
     *
     *      结果11111 = 31
     *
     */

}

总结:

通过跟踪上面的源码,我们知道了zookeeper的权限acl是如何实现的,以及客户端和服务端之间是如何相互配合的

  • 客户端同样是经过主线程跟进不同的命令类型,将请求打包packet发送到服务端
  • 服务端将addauth添加认证信息保存在内存中
  • node会被持久化,因为它需要的认证同样被持久化
  • 在进行处理request之前,会进行checkAcl的操作,它是在第一个处理器中完成的,只有经过权限认证,request才能继续在processor链中往下传递

版权声明:本文为ZhuChangwu原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/ZhuChangwu/p/11598441.html