Machine Learning in Action ---- kNN
————恢复内容开始————
1 # -*- coding: utf-8 -*- 2 """ 3 Created on Thu Nov 14 19:29:08 2019 4 5 @author: HTING 6 """ 7 8 # 导入科学计算包模块 9 import numpy as np 10 11 # 导入运算符模块 12 import operator 13 14 # ============================================================================= 15 # # 导入 os 模块 16 # import os 17 # ============================================================================= 18 19 # 创建数据集和标签 20 def createDataSet(): 21 group = np.array([[1.0, 1.1], 22 [1.0, 1.0], 23 [0, 0], 24 [0, 0.1]]) 25 labels = ('A', 'A', 'B', 'B') 26 27 return group, labels 28 29 30 31 ''' 32 33 Parameters: 34 35 inX - 用于分类的数据(测试集) 36 dataSet - 用于训练的数据(训练集) 37 labes - 训练数据集的label 38 k - 选择距离最小的k个点 39 40 return: 41 42 sortedClassCount[0][0] - 输入数据的预测分类 43 44 ''' 45 46 # k-近邻算法 47 48 def classify0(inX, k): 49 50 # import dataSet, labels 51 dataSet, labels = createDataSet() 52 53 # 计算距离 54 # A.shape[i] : 第i维的长度 55 dataSetSize = dataSet.shape[0] 56 57 # 用tile将输入向量复制成和数据集一样大的矩阵 58 ''' 59 np.tile(A, reps) : 60 数组A重复一定次数获得新数组; 61 A - array, list, tuple, dict, matrix 62 以及基本数据类型int, string, float以及bool类型; 63 reps - tuple,list, dict, array, int, bool. 64 但不可以是float, string, matrix类型; 65 66 np.tile(A,(m,n)): 67 数组A重复n次 --> nA; # A重复n次 68 nA --> m[nA]. # m 维的nA 69 ''' 70 diffMat = np.tile(inX, (dataSetSize,1)) - dataSet 71 sqDiffMat = diffMat ** 2 72 73 ''' 74 In Numpy dimensions are called axes. 75 The number of axes is rank. 76 77 ''' 78 sqDistances = sqDiffMat.sum(axis=1) 79 # sqDistances = np.sum(sqDiffMat, axis=1) 80 81 distances = sqDistances ** 0.5 82 83 # 按距离从小到大排序,并返回相应的索引位置 84 # A.argsort()[] 85 sortedDistIndicies = distances.argsort() 86 87 88 # 创建一个字典,存储标签和出现次数 89 classCount = {} 90 91 # 选择距离最小的k个点 92 for i in range(k): 93 ''' 94 for i in range(m,n,z) | range(start, stop, step) 95 i <--> m -> n-1, step = z; 96 default: m = 0, z = 1 97 ''' 98 # 查找样本的标签类型 99 voteIlabel = labels[sortedDistIndicies[i]] 100 101 # 在字典中给找到的样本标签类型+1 102 ''' 103 若不存在voteIlabel, 104 则字典classCount中生成voteIlabel元素,并使其对应的数字为0 : 105 : classCount = {voteIlabel:0} 106 此时classCount.get(voteIlabel,0)作用是检测并生成新元素,括号中的0只用作初始化,之后再无作用; 107 当字典中有voteIlabel元素时, 108 classCount.get(voteIlabel,0)作用是返回该元素对应的值 109 ''' 110 classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 111 112 # 排序并返回出现次数最多的标签类型 113 ''' 114 sorted(iterable, cmp=None, key=None, reverse=False) --> new sorted list 115 cmp -- accept function; 116 key -- accept one element of one function, which is function return , 117 the weight to sort; 118 reverse -- True -> positive order; 119 False -> negative order; 120 121 operator.itemgetter() 122 用于获取对象的哪些维的数据,参数为一些序号。 123 注,operator.itemgetter函数获取的不是值,而是定义了一个函数,通过该函数作用到对象上才能获取值。 124 ''' 125 sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1), reverse=True) 126 127 return sortedClassCount[0][0] 128 129 130
————恢复内容结束————
# -*- coding: utf-8 -*- """ Created on Thu Nov 14 19:29:08 2019 @author: HTING """ # 导入科学计算包模块 import numpy as np # 导入运算符模块 import operator # ============================================================================= # # 导入 os 模块 # import os # ============================================================================= # 创建数据集和标签 def createDataSet(): group = np.array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]]) labels = ('A', 'A', 'B', 'B') return group, labels ''' Parameters: inX - 用于分类的数据(测试集) dataSet - 用于训练的数据(训练集) labes - 训练数据集的label k - 选择距离最小的k个点 return: sortedClassCount[0][0] - 输入数据的预测分类 ''' # k-近邻算法 def classify0(inX, k): # import dataSet, labels dataSet, labels = createDataSet() # 计算距离 # A.shape[i] : 第i维的长度 dataSetSize = dataSet.shape[0] # 用tile将输入向量复制成和数据集一样大的矩阵 ''' np.tile(A, reps) : 数组A重复一定次数获得新数组; A - array, list, tuple, dict, matrix 以及基本数据类型int, string, float以及bool类型; reps - tuple,list, dict, array, int, bool. 但不可以是float, string, matrix类型; np.tile(A,(m,n)): 数组A重复n次 --> nA; # A重复n次 nA --> m[nA]. # m 维的nA ''' diffMat = np.tile(inX, (dataSetSize,1)) - dataSet sqDiffMat = diffMat ** 2 ''' In Numpy dimensions are called axes. The number of axes is rank. ''' sqDistances = sqDiffMat.sum(axis=1) # sqDistances = np.sum(sqDiffMat, axis=1) distances = sqDistances ** 0.5 # 按距离从小到大排序,并返回相应的索引位置 # A.argsort()[] sortedDistIndicies = distances.argsort() # 创建一个字典,存储标签和出现次数 classCount = {} # 选择距离最小的k个点 for i in range(k): ''' for i in range(m,n,z) | range(start, stop, step) i <--> m -> n-1, step = z; default: m = 0, z = 1 ''' # 查找样本的标签类型 voteIlabel = labels[sortedDistIndicies[i]] # 在字典中给找到的样本标签类型+1 ''' 若不存在voteIlabel, 则字典classCount中生成voteIlabel元素,并使其对应的数字为0 : : classCount = {voteIlabel:0} 此时classCount.get(voteIlabel,0)作用是检测并生成新元素,括号中的0只用作初始化,之后再无作用; 当字典中有voteIlabel元素时, classCount.get(voteIlabel,0)作用是返回该元素对应的值 ''' classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 # 排序并返回出现次数最多的标签类型
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0]