2019 ICPC Asia Nanjing Regional K. Triangle

题目:在直角坐标系中给定 p1,p2,p3构成三角形,给定p4可能在三角形边上也可能不在,

问能不能在三角形上找出p5,使得线段p4p5,平分三角形(p4必须在三角形上)。不能则输出-1.

思路:四个点,三条边,三条边的长度,和代码的数据一一对应存储。

最麻烦的就是p4只存在于一条边上。

代码:

  1 #include<bits/stdc++.h>
  2 using namespace std;
  3 
  4 const double eps = 1e-6;
  5 int sgn(double x)
  6 {
  7     if(fabs(x) < eps)return 0;
  8     if(x < 0)return -1;
  9     else return 1;
 10 }
 11 struct Point
 12 {
 13     double x,y;
 14     Point(){}
 15     Point(double _x,double _y)
 16     {
 17         x = _x;y = _y;
 18     }
 19     Point operator -(const Point &b)const
 20     {
 21         return Point(x - b.x,y - b.y);
 22     }
 23 
 24     double operator ^(const Point &b)const//叉积
 25     {
 26         return x*b.y - y*b.x;
 27     }
 28 
 29     double operator *(const Point &b)const//点积
 30     {
 31         return x*b.x + y*b.y;
 32     }
 33     void transXY(double B)//绕原点旋转角度B(弧度值),后x,y的变化
 34     {
 35         double tx = x,ty = y;
 36         x = tx*cos(B) - ty*sin(B);
 37         y = tx*sin(B) + ty*cos(B);
 38     }
 39     void read(double a,double b){
 40         x = a; y = b;
 41     }
 42 };
 43 struct Line
 44 {
 45     Point s,e;
 46     Line(){}
 47     Line(Point _s,Point _e)
 48     {
 49         s = _s;e = _e;
 50     }
 51     pair<int,Point> operator &(const Line &b)const
 52     {
 53         //两直线相交求交点
 54         //第一个值为0表示直线重合,为1表示平行,为0表示相交,为2是相交
 55         //只有第一个值为2时,交点才有意义
 56         Point res = s;
 57         if(sgn((s-e)^(b.s-b.e)) == 0)
 58         {
 59             if(sgn((s-b.e)^(b.s-b.e)) == 0)
 60                 return make_pair(0,res);//重合
 61             else return make_pair(1,res);//平行
 62         }
 63         double t = ((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e));
 64         res.x += (e.x-s.x)*t;
 65         res.y += (e.y-s.y)*t;
 66         return make_pair(2,res);
 67     }
 68     void read(Point& a,Point& b){
 69         s.x = a.x;
 70         s.y = a.y;
 71         e.x = b.x;
 72         e.y = b.y;
 73     }
 74 };
 75 bool OnSeg(Point& P,Line& L)//判断点在线段上
 76 {
 77     return
 78     sgn((L.s-P)^(L.e-P)) == 0 &&
 79     sgn((P.x - L.s.x) * (P.x - L.e.x)) <= 0 &&
 80     sgn((P.y - L.s.y) * (P.y - L.e.y)) <= 0;
 81 }
 82 //线长
 83 inline double get_Ldis(Line& L){
 84     return sqrt((L.s.x-L.e.x)*(L.s.x-L.e.x)+(L.s.y-L.e.y)*(L.s.y-L.e.y));
 85 }
 86 //两点长
 87 inline double get_pdis(Point& a,Point& b){
 88     return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
 89 }
 90 
 91 inline void print(Line& L){
 92     printf("%.12f %.12f\n",(L.s.x+L.e.x)/2,(L.s.y+L.e.y)/2);
 93 }
 94 
 95 inline double fun(double n,double x1,double x2,double d){
 96     return n*(x1-x2)/d + x2;
 97 }
 98 Point p[5]; Line L[5]; double d[5];
 99 inline void solve(Line& l,double m1,double m2,Point& p1,Point& p2,Point& p3,double d1,double d2,double d3){
100 
101     double n;
102     double x,y;
103     if(m1==m2) {printf("%.12f %.12f\n",p1.x,p1.y); return;}
104     else if( m1 > m2){
105         n = (d1*d2)/(2*m1);
106         x = fun(n,p1.x,p2.x,d1);
107         y = fun(n,p1.y,p2.y,d1);
108     }
109     else{
110         n = (d2*d3)/(2*m2);
111         x = fun(n,p1.x,p3.x,d3);
112         y = fun(n,p1.y,p3.y,d3);
113     }
114     printf("%.12f %.12f\n",x,y);
115 }
116 
117 int main()
118 {
119 
120     int T;
121     double m1,m2;
122     scanf("%d",&T);
123     while(T--){
124         scanf("%lf%lf%lf%lf%lf%lf%lf%lf",&p[1].x,&p[1].y,&p[2].x,&p[2].y,&p[3].x,&p[3].y,&p[4].x,&p[4].y);
125         L[1].read(p[1],p[2]); L[2].read(p[2],p[3]); L[3].read(p[3],p[1]);
126         for(int i = 1; i <= 3; ++i) d[i] = get_Ldis(L[i]);
127 
128         if(OnSeg(p[4],L[1]) || OnSeg(p[4],L[2]) || OnSeg(p[4],L[3])){
129             if(OnSeg(p[4],L[1]) && OnSeg(p[4],L[2])){
130                 print(L[3]); continue;
131             }
132             if(OnSeg(p[4],L[1]) && OnSeg(p[4],L[3])){
133                 print(L[2]);continue;
134             }
135             if(OnSeg(p[4],L[2]) && OnSeg(p[4],L[3])){
136                 print(L[1]);continue;
137             }
138             if(OnSeg(p[4],L[2])){
139                 m1 = get_pdis(p[2],p[4]);
140                 m2 = d[2] - m1;
141                 solve(L[2],m1,m2,p[1],p[2],p[3],d[1],d[2],d[3]);
142                 continue;
143             }
144             if(OnSeg(p[4],L[1])){
145                 m1 = get_pdis(p[1],p[4]);
146                 m2 = d[1] - m1;
147                 solve(L[1],m1,m2,p[3],p[1],p[2],d[3],d[1],d[2]);
148                 continue;
149             }
150             if(OnSeg(p[4],L[3])){
151                 m1 = get_pdis(p[3],p[4]);
152                 m2 = d[3] - m1;
153                 solve(L[3],m1,m2,p[2],p[3],p[1],d[2],d[3],d[1]);
154                 continue;
155             }
156             printf("-1\n");
157         }
158         else printf("-1\n");
159     }
160 
161     return 0;
162 }

 

 

版权声明:本文为SSummerZzz原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/SSummerZzz/p/11971821.html