关键词:爬虫、python、request、接口、excel处理

思路:

1、首先准备好excel文档,把股票代码事先编辑进去。

2、脚本读取文档,依次读出股票代码到指定站点发起请求获取股票信息

3、将获取的股票信息简单处理,依次写入到指定的文档单元格中,完成整个实例过程

用到的python库:xlrd(读取excel)、requests(获取网页数据)、lxml(处理网页数据)、openpyyxl(对excel进行写入编辑)

具体步骤:

一,导入相关库

import xlrd  #引入读取excel库
import requests   #倒入requests库
from lxml import etree  #倒入lxml 库(没有这个库,pip install lxml安装)
import os
import sys
import openpyxl

二,读取excel内的股票代码,写入数组(共后面的函数调用)

#读取excel文档内的股票代码
def code():
    wb = xlrd.open_workbook(path+'\\stock.xlsx')# 打开Excel文件
    data = wb.sheet_by_name('Sheet1')#通过excel表格名称(rank)获取工作表
    b=data.col_values(0)#获取第一列数据(数组)
    list=[]
    for c in b[1:]:#for循环,排除第一行数据
        d=int(c)
        s="%06d" % d#股票代码一共有6位,常规打印无法打印出首位带0的代码的0部分,补齐缺失的0
        #print(s)
        list.append(s)
    return(list)
code=code()

三、循环读取股票代码查询股票信息,写入同一类数据的数组内(共后面写入excel)

#code函数获取的代码,循环爬取代码对应的股票数据,将股票数据写入对应的数组(同一类)中
def get(code):
    list_name=[]#股票名称
    list_score=[]#综合评分
    list_Short=[]#短期趋势   
    list_Metaphase=[]#中期趋势
    list_Long=[]#长期趋势
    list_comprehensive=[]#综合评判
    list_day=[]#5日涨幅
    list_mouth=[]#3个月涨幅
    list_year=[]#1年涨幅
    for num in code:
        url='http://stockpage.10jqka.com.cn/'+num+'/'
        headers = {
            'Accept-Encoding': 'gzip, deflate',
            'Accept-Language': 'zh-CN,zh;q=0.9',
            'Upgrade-Insecure-Requests': '1',
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36',
            'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8',
            'Referer': 'http://doctor.10jqka.com.cn/603160/',
            'Connection': 'keep-alive',
            'Cache-Control': 'max-age=0',
            }

        response = requests.get(url, headers=headers).text
        html = etree.HTML(response)
        b = html.xpath('//h1[@class = "m_logo fl"]/a/strong/text()')
        #print(b[0])#股票名称
        c = html.xpath('//span[@class = "analyze-tips mt7"]/text()')
        #print(c[0])#综合评分
        d = html.xpath('//div[@class = "analyze-txt fr"]/div/div[2]/text()')
        #print("短期趋势:",d[0])#短期趋势
        e = html.xpath('//div[@class = "analyze-txt fr"]/div[2]/div[2]/text()')
        #print("中期趋势:",e[0])#中期趋势
        f = html.xpath('//div[@class = "analyze-txt fr"]/div[3]/div[2]/text()')
        #print("远期趋势:",f[0])#远期趋势
        g = html.xpath('//div[@class = "txt-phra"]/text()')
        h = html.xpath('//div[@class = "txt-phra"]/strong/text()')
        i = html.xpath('//div[@class = "txt-phra"]/text()[2]')
        #print(g[0],h[0],i[0])#综合评判
        m=g[0]+h[0]+i[0]
        j = html.xpath('//tr[@class = "even hot_cont"]/td[2]/text()')
        k = html.xpath('//tr[@class = "even hot_cont"]/td[3]/text()')
        l = html.xpath('//tr[@class = "even hot_cont"]/td[4]/text()')
        #print("5日涨幅:",j[0])#5日涨幅
        #print("3个月涨幅:",k[0])#3个月涨幅
        #print("1年涨幅:",l[0])#1年涨幅
        list_name.append(b[0])#股票名称数组
        list_score.append(c[0])#综合评分
        list_Short.append(d[0])#短期趋势   
        list_Metaphase.append(e[0])#中期趋势
        list_Long.append(f[0])#长期趋势
        list_comprehensive.append(m)#综合评判
        list_day.append(j[0])#5日涨幅
        list_mouth.append(k[0])#3个月涨幅
        list_year.append(l[0])#1年涨幅

    return(list_name,list_score,list_Short,list_Metaphase,
    list_Long,list_comprehensive,list_day,list_mouth,list_year)
get=get(code)

四、将写入数组的股票数据,依次写入到对应股票代码后的单元格中

#读取get函数生成的股票数据,依次写入到excel文档中
xfile = openpyxl.load_workbook(path+'\\stock.xlsx')#加载文件
sheet1 = xfile.worksheets[0] 
#excel中单元格为B2开始,即第2列,第2行
for i in range(len(get[0])):#股票名称
    sheet1.cell(i+2, 2).value=get[0][i]

for i in range(len(baidu[0])):#当前价格
    sheet1.cell(i+2, 3).value=baidu[0][i]

for i in range(len(baidu[1])):#当前市值
    sheet1.cell(i+2, 4).value=baidu[1][i]

for i in range(len(get[1])):#综合评分
    sheet1.cell(i+2, 5).value=get[1][i]

for i in range(len(get[2])):#短期趋势  
    sheet1.cell(i+2, 6).value=get[2][i]

for i in range(len(get[3])):#中期趋势
    sheet1.cell(i+2, 7).value=get[3][i]

for i in range(len(get[4])):#长期趋势
    sheet1.cell(i+2, 8).value=get[4][i]

for i in range(len(get[5])):#综合评判
    sheet1.cell(i+2, 9).value=get[5][i]

for i in range(len(get[6])):#5日涨幅
    sheet1.cell(i+2, 10).value=get[6][i]

for i in range(len(get[7])):#3个月涨幅
    sheet1.cell(i+2, 11).value=get[7][i]

for i in range(len(get[8])):#1年涨幅
    sheet1.cell(i+2, 12).value=get[8][i]
xfile.save(path+'\\stock.xlsx')

直接后的文档内容

 

全部代码

#本脚本主要实现循环爬取数据后:
# 1、同一类数据统一写入到同一个数组中,
# 2、读取数组数据写入指定的excel列中,实现最终数据爬取
import xlrd  #引入读取excel库
import requests   #倒入requests库
from lxml import etree  #倒入lxml 库(没有这个库,pip install lxml安装)
import os
import sys
import openpyxl

path = os.path.abspath(os.path.dirname(sys.argv[0]))

#读取excel文档内的股票代码
def code():
    wb = xlrd.open_workbook(path+'\\stock.xlsx')# 打开Excel文件
    data = wb.sheet_by_name('Sheet1')#通过excel表格名称(rank)获取工作表
    b=data.col_values(0)#获取第一列数据(数组)
    list=[]
    for c in b[1:]:#for循环,排除第一行数据
        d=int(c)
        s="%06d" % d#股票代码一共有6位,常规打印无法打印出首位带0的代码的0部分,补齐缺失的0
        #print(s)
        list.append(s)
    return(list)
code=code()

#code函数获取的代码,循环爬取代码对应的股票数据,将股票数据写入对应的数组(同一类)中
def get(code):
    list_name=[]#股票名称
    list_score=[]#综合评分
    list_Short=[]#短期趋势   
    list_Metaphase=[]#中期趋势
    list_Long=[]#长期趋势
    list_comprehensive=[]#综合评判
    list_day=[]#5日涨幅
    list_mouth=[]#3个月涨幅
    list_year=[]#1年涨幅
    for num in code:
        url='http://stockpage.10jqka.com.cn/'+num+'/'
        headers = {
            'Accept-Encoding': 'gzip, deflate',
            'Accept-Language': 'zh-CN,zh;q=0.9',
            'Upgrade-Insecure-Requests': '1',
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36',
            'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8',
            'Referer': 'http://doctor.10jqka.com.cn/603160/',
            'Connection': 'keep-alive',
            'Cache-Control': 'max-age=0',
            }

        response = requests.get(url, headers=headers).text
        html = etree.HTML(response)
        b = html.xpath('//h1[@class = "m_logo fl"]/a/strong/text()')
        #print(b[0])#股票名称
        c = html.xpath('//span[@class = "analyze-tips mt7"]/text()')
        #print(c[0])#综合评分
        d = html.xpath('//div[@class = "analyze-txt fr"]/div/div[2]/text()')
        #print("短期趋势:",d[0])#短期趋势
        e = html.xpath('//div[@class = "analyze-txt fr"]/div[2]/div[2]/text()')
        #print("中期趋势:",e[0])#中期趋势
        f = html.xpath('//div[@class = "analyze-txt fr"]/div[3]/div[2]/text()')
        #print("远期趋势:",f[0])#远期趋势
        g = html.xpath('//div[@class = "txt-phra"]/text()')
        h = html.xpath('//div[@class = "txt-phra"]/strong/text()')
        i = html.xpath('//div[@class = "txt-phra"]/text()[2]')
        #print(g[0],h[0],i[0])#综合评判
        m=g[0]+h[0]+i[0]
        j = html.xpath('//tr[@class = "even hot_cont"]/td[2]/text()')
        k = html.xpath('//tr[@class = "even hot_cont"]/td[3]/text()')
        l = html.xpath('//tr[@class = "even hot_cont"]/td[4]/text()')
        #print("5日涨幅:",j[0])#5日涨幅
        #print("3个月涨幅:",k[0])#3个月涨幅
        #print("1年涨幅:",l[0])#1年涨幅
        list_name.append(b[0])#股票名称数组
        list_score.append(c[0])#综合评分
        list_Short.append(d[0])#短期趋势   
        list_Metaphase.append(e[0])#中期趋势
        list_Long.append(f[0])#长期趋势
        list_comprehensive.append(m)#综合评判
        list_day.append(j[0])#5日涨幅
        list_mouth.append(k[0])#3个月涨幅
        list_year.append(l[0])#1年涨幅

    return(list_name,list_score,list_Short,list_Metaphase,
    list_Long,list_comprehensive,list_day,list_mouth,list_year)
get=get(code)

def baidu(code):
    list_Price=[]
    list_market=[]
    for num in code:
        cookies = {
            'BIDUPSID': '90EF3BD78F53BC8C96DF84CD3854CA2D',
            'PSTM': '1578233930',
            'BD_UPN': '12314753',
            'BAIDUID': '885754C8E6BD7B1A771802631815CC6D:FG=1',
            'BDORZ': 'B490B5EBF6F3CD402E515D22BCDA1598',
            'BDUSS': 'mxYdVpwOEx0eGJsT3VUYTJXbkZJYWhKSGpQWnlqaVBwMlExTWNNRkR4cWtabHRlSVFBQUFBJCQAAAAAAAAAAAEAAACRJsY-cGlwacnxu7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKTZM16k2TNeV',
            'COOKIE_SESSION': '7_0_5_3_11_3_0_0_4_2_1_0_73199_0_169_0_1580456363_0_1580456194%7C9%23622712_32_1580376248%7C6',
            'cflag': '13%3A3',
            'BD_HOME': '1',
            'BDRCVFR[feWj1Vr5u3D]': 'I67x6TjHwwYf0',
            'delPer': '0',
            'BD_CK_SAM': '1',
            'PSINO': '3',
            'H_PS_PSSID': '1438_21104_26350',
            'H_PS_645EC': '29b8ZVy4WP7OUTz6%2FjeON9IexqLhOnMXkLTzhD5NfPu4fH%2FPZmThFknleY0LwzNQZ8j8',
            'BDSVRTM': '121',
            'WWW_ST': '1580466352318',
            }

        headers = {
            'is_xhr': '1',
            'Accept-Encoding': 'gzip, deflate, br',
            'Accept-Language': 'zh-CN,zh;q=0.9',
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36',
            'is_pbs': num,
            'Accept': '*/*',
            'Referer': 'https://www.baidu.com/s?wd='+num+'&rsv_spt=1&rsv_iqid=0xa5a17c8700013159&issp=1&f=8&rsv_bp=1&rsv_idx=2&ie=utf-8&rqlang=cn&tn=baiduhome_pg&rsv_enter=0&rsv_dl=tb&oq='+num+'&rsv_t=29b8ZVy4WP7OUTz6%2FjeON9IexqLhOnMXkLTzhD5NfPu4fH%2FPZmThFknleY0LwzNQZ8j8&rsv_pq=b379448d00013935',
            'X-Requested-With': 'XMLHttpRequest',
            'Connection': 'keep-alive',
            'is_referer': 'https://www.baidu.com/s?wd='+num+'&rsv_spt=1&rsv_iqid=0xa5a17c8700013159&issp=1&f=8&rsv_bp=1&rsv_idx=2&ie=utf-8&tn=baiduhome_pg&rsv_enter=1&rsv_dl=tb&rsv_n=2&rsv_sug3=1&rsv_sug1=1&rsv_sug7=100&rsv_sug2=0&inputT=359&rsv_sug4=359',
            }

        params = (
            ('ie', ['utf-8', 'utf-8']),
            ('newi', '1'),
            ('mod', '1'),
            ('isbd', '1'),
            ('isid', 'b379448d00013935'),
            ('wd', num),
            ('rsv_spt', '1'),
            ('rsv_iqid', '0xa5a17c8700013159'),
            ('issp', '1'),
            ('f', '8'),
            ('rsv_bp', '1'),
            ('rsv_idx', '2'),
            ('rqlang', 'cn'),
            ('tn', 'baiduhome_pg'),
            ('rsv_enter', '0'),
            ('rsv_dl', 'tb'),
            ('oq', num),
            ('rsv_t', '29b8ZVy4WP7OUTz6/jeON9IexqLhOnMXkLTzhD5NfPu4fH/PZmThFknleY0LwzNQZ8j8'),
            ('rsv_pq', 'b379448d00013935'),
            ('bs', num),
            ('rsv_sid', '1438_21104_26350'),
            ('_ss', '1'),
            ('clist', ''),
            ('hsug', ''),
            ('f4s', '1'),
            ('csor', '6'),
            ('_cr1', '29647'),
            )

        response = requests.get('https://www.baidu.com/s', headers=headers, params=params, cookies=cookies).text
        html = etree.HTML(response)
        a = html.xpath('//span[@class = "op-stockdynamic-moretab-cur-num c-gap-right-small"]/text()')
        #print('当前价格:',a[0])#当前价格
        b = html.xpath('//ul[@class = "op-stockdynamic-moretab-info"]/li[8]/span[2]/text()')
        #print('当前市值:',b[0])#当前市值

        list_Price.append(a[0])#当前价格
        list_market.append(b[0])#当前市值

    return(list_Price,list_market)

baidu=baidu(code)

#读取get函数生成的股票数据,依次写入到excel文档中
xfile = openpyxl.load_workbook(path+'\\stock.xlsx')#加载文件
sheet1 = xfile.worksheets[0] 
#excel中单元格为B2开始,即第2列,第2行
for i in range(len(get[0])):#股票名称
    sheet1.cell(i+2, 2).value=get[0][i]

for i in range(len(baidu[0])):#当前价格
    sheet1.cell(i+2, 3).value=baidu[0][i]

for i in range(len(baidu[1])):#当前市值
    sheet1.cell(i+2, 4).value=baidu[1][i]

for i in range(len(get[1])):#综合评分
    sheet1.cell(i+2, 5).value=get[1][i]

for i in range(len(get[2])):#短期趋势  
    sheet1.cell(i+2, 6).value=get[2][i]

for i in range(len(get[3])):#中期趋势
    sheet1.cell(i+2, 7).value=get[3][i]

for i in range(len(get[4])):#长期趋势
    sheet1.cell(i+2, 8).value=get[4][i]

for i in range(len(get[5])):#综合评判
    sheet1.cell(i+2, 9).value=get[5][i]

for i in range(len(get[6])):#5日涨幅
    sheet1.cell(i+2, 10).value=get[6][i]

for i in range(len(get[7])):#3个月涨幅
    sheet1.cell(i+2, 11).value=get[7][i]

for i in range(len(get[8])):#1年涨幅
    sheet1.cell(i+2, 12).value=get[8][i]
xfile.save(path+'\\stock.xlsx')

print("爬取完成")

 

 

 

 
 

版权声明:本文为becks原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/becks/p/12250310.html