主要内容

  • 自定义函数式接口
  • 函数式编程
  • 常用函数式接口
  • Stream流
  • 方法引用

学习目标

  • 能够使用@FunctionalInterface注解
  • 能够自定义无参无返回函数式接口
  • 能够自定义有参有返回函数式接口
  • 能够理解Lambda延迟执行的特点
  • 能够使用Lambda作为方法的参数
  • 能够使用Lambda作为方法的返回值
  • 能够使用Supplier函数式接口
  • 能够使用Consumer函数式接口
  • 能够使用Function<T, R>函数式接口
  • 能够使用Predicate函数式接口
  • 能够理解流与集合相比的优点
  • 能够理解流的延迟执行特点
  • 能够通过集合、映射或数组获取流
  • 能够掌握常用的流操作
  • 能够使用输出语句的方法引用
  • 能够通过4种方式使用方法引用
  • 能够使用类和数组的构造器引用

第一章 函数式接口

1.1 概念

函数式接口在Java中是指:有且仅有一个抽象方法的接口

函数式接口,即适用于函数式编程场景的接口。而Java中的函数式编程体现就是Lambda,所以函数式接口就是可以适用于Lambda使用的接口。只有确保接口中有且仅有一个抽象方法,Java中的Lambda才能顺利地进行推导。

备注:“语法糖”是指使用更加方便,但是原理不变的代码语法。例如在遍历集合时使用的for-each语法,其实底层的实现原理仍然是迭代器,这便是“语法糖”。从应用层面来讲,Java中的Lambda可以被当做是匿名内部类的“语法糖”,但是二者在原理上是不同的。

1.2 格式

只要确保接口中有且仅有一个抽象方法即可:

修饰符 interface 接口名称 {
    public abstract 返回值类型 方法名称(可选参数信息);
    // 其他非抽象方法内容
}

由于接口当中抽象方法的public abstract是可以省略的,所以定义一个函数式接口很简单:

public interface MyFunctionalInterface {    
    void myMethod();
}

1.3 @FunctionalInterface注解

@Override注解的作用类似,Java 8中专门为函数式接口引入了一个新的注解:@FunctionalInterface。该注解可用于一个接口的定义上:

@FunctionalInterface
public interface MyFunctionalInterface {
    void myMethod();
}

一旦使用该注解来定义接口,编译器将会强制检查该接口是否确实有且仅有一个抽象方法,否则将会报错。需要注意的是,即使不使用该注解,只要满足函数式接口的定义,这仍然是一个函数式接口,使用起来都一样。

1.4 自定义函数式接口

对于刚刚定义好的MyFunctionalInterface函数式接口,典型使用场景就是作为方法的参数:

public class Demo09FunctionalInterface {    
    // 使用自定义的函数式接口作为方法参数
    private static void doSomething(MyFunctionalInterface inter) {
        inter.myMethod(); // 调用自定义的函数式接口方法
    }

    public static void main(String[] args) {
        // 调用使用函数式接口的方法
        doSomething(() -> System.out.println("Lambda执行啦!"));
    }
}

第二章 函数式编程

在兼顾面向对象特性的基础上,Java语言通过Lambda表达式与方法引用等,为开发者打开了函数式编程的大门。下面我们做一个初探。

2.1 Lambda的延迟执行

有些场景的代码执行后,结果不一定会被使用,从而造成性能浪费。而Lambda表达式是延迟执行的,这正好可以作为解决方案,提升性能。

性能浪费的日志案例

注:日志可以帮助我们快速的定位问题,记录程序运行过程中的情况,以便项目的监控和优化。

一种典型的场景就是对参数进行有条件使用,例如对日志消息进行拼接后,在满足条件的情况下进行打印输出:

public class Demo01Logger {
    private static void log(int level, String msg) {
        if (level == 1) {
            System.out.println(msg);
        }
    }

    public static void main(String[] args) {
        String msgA = "Hello";
        String msgB = "World";
        String msgC = "Java";

        log(1, msgA + msgB + msgC);
    }
}

这段代码存在问题:无论级别是否满足要求,作为log方法的第二个参数,三个字符串一定会首先被拼接并传入方法内,然后才会进行级别判断。如果级别不符合要求,那么字符串的拼接操作就白做了,存在性能浪费。

备注:SLF4J是应用非常广泛的日志框架,它在记录日志时为了解决这种性能浪费的问题,并不推荐首先进行字符串的拼接,而是将字符串的若干部分作为可变参数传入方法中,仅在日志级别满足要求的情况下才会进行字符串拼接。例如:LOGGER.debug("变量{}的取值为{}。", "os", "macOS"),其中的大括号{}为占位符。如果满足日志级别要求,则会将“os”和“macOS”两个字符串依次拼接到大括号的位置;否则不会进行字符串拼接。这也是一种可行解决方案,但Lambda可以做到更好。

体验Lambda的更优写法

使用Lambda必然需要一个函数式接口:

@FunctionalInterface
public interface MessageBuilder {  
    String buildMessage();
}

然后对log方法进行改造:

public class Demo02LoggerLambda {
    private static void log(int level, MessageBuilder builder) {
        if (level == 1) {
            System.out.println(builder.buildMessage());
        }
    }

    public static void main(String[] args) {
        String msgA = "Hello";
        String msgB = "World";
        String msgC = "Java";

        log(1, () -> msgA + msgB + msgC );
    }
}

这样一来,只有当级别满足要求的时候,才会进行三个字符串的拼接;否则三个字符串将不会进行拼接。

证明Lambda的延迟

下面的代码可以通过结果进行验证:

public class Demo03LoggerDelay {
    private static void log(int level, MessageBuilder builder) {
        if (level == 1) {
            System.out.println(builder.buildMessage());
        }
    }

    public static void main(String[] args) {
        String msgA = "Hello";
        String msgB = "World";
        String msgC = "Java";

        log(2, () -> {
            System.out.println("Lambda执行!");
            return msgA + msgB + msgC;
        });
    }
}

从结果中可以看出,在不符合级别要求的情况下,Lambda将不会执行。从而达到节省性能的效果。

扩展:实际上使用内部类也可以达到同样的效果,只是将代码操作延迟到了另外一个对象当中通过调用方法来完成。而是否调用其所在方法是在条件判断之后才执行的。

2.2 使用Lambda作为参数和返回值

如果抛开实现原理不说,Java中的Lambda表达式可以被当作是匿名内部类的替代品。如果方法的参数是一个函数式接口类型,那么就可以使用Lambda表达式进行替代。使用Lambda表达式作为方法参数,其实就是使用函数式接口作为方法参数。

例如java.lang.Runnable接口就是一个函数式接口,假设有一个startThread方法使用该接口作为参数,那么就可以使用Lambda进行传参。这种情况其实和Thread类的构造方法参数为Runnable没有本质区别。

public class Demo04Runnable {
    private static void startThread(Runnable task) {
        new Thread(task).start();
    }

    public static void main(String[] args) {
        startThread(() -> System.out.println("线程任务执行!"));
    }
}

类似地,如果一个方法的返回值类型是一个函数式接口,那么就可以直接返回一个Lambda表达式。当需要通过一个方法来获取一个java.util.Comparator接口类型的对象作为排序器时,就可以调该方法获取。

import java.util.Arrays;
import java.util.Comparator;

public class Demo06Comparator {
    private static Comparator<String> newComparator() {
        return (a, b) -> b.length() - a.length();
    }

    public static void main(String[] args) {
        String[] array = { "abc", "ab", "abcd" };
        System.out.println(Arrays.toString(array));
        Arrays.sort(array, newComparator());
        System.out.println(Arrays.toString(array));
    }
}

其中直接return一个Lambda表达式即可。

第三章 常用函数式接口

JDK提供了大量常用的函数式接口以丰富Lambda的典型使用场景,它们主要在java.util.function包中被提供。下面是最简单的几个接口及使用示例。

3.1 Supplier接口

java.util.function.Supplier<T>接口仅包含一个无参的方法:T get()。用来获取一个泛型参数指定类型的对象数据。由于这是一个函数式接口,这也就意味着对应的Lambda表达式需要“对外提供”一个符合泛型类型的对象数据。

import java.util.function.Supplier;

public class Demo08Supplier {
    private static String getString(Supplier<String> function) {
        return function.get();
    }

    public static void main(String[] args) {
        String msgA = "Hello";
        String msgB = "World";
        System.out.println(getString(() -> msgA + msgB));
    }
}

练习:求数组元素最大值

题目

使用Supplier接口作为方法参数类型,通过Lambda表达式求出int数组中的最大值。提示:接口的泛型请使用java.lang.Integer类。

解答

public class Demo02Test {
    //定一个方法,方法的参数传递Supplier,泛型使用Integer
    public static int getMax(Supplier<Integer> sup){
        return sup.get();
    }

    public static void main(String[] args) {
        int arr[] = {2,3,4,52,333,23};

        //调用getMax方法,参数传递Lambda
        int maxNum = getMax(()->{
        //计算数组的最大值
        int max = arr[0];
        for(int i : arr){
            if(i>max){
                max = i;
            }
        }
        return max;
        });
        System.out.println(maxNum);
    }
}

3.3 Consumer接口

java.util.function.Consumer<T>接口则正好与Supplier接口相反,它不是生产一个数据,而是消费一个数据,其数据类型由泛型决定。

抽象方法:accept

Consumer接口中包含抽象方法void accept(T t),意为消费一个指定泛型的数据。基本使用如:

import java.util.function.Consumer;

public class Demo09Consumer {
    private static void consumeString(Consumer<String> function) {
        function.accept("Hello");
    }

    public static void main(String[] args) {
        consumeString(s -> System.out.println(s));
    }
}

当然,更好的写法是使用方法引用。

默认方法:andThen

如果一个方法的参数和返回值全都是Consumer类型,那么就可以实现效果:消费数据的时候,首先做一个操作,然后再做一个操作,实现组合。而这个方法就是Consumer接口中的default方法andThen。下面是JDK的源代码:

default Consumer<T> andThen(Consumer<? super T> after) {
    Objects.requireNonNull(after);
    return (T t) -> { accept(t); after.accept(t); };
}

备注:java.util.ObjectsrequireNonNull静态方法将会在参数为null时主动抛出NullPointerException异常。这省去了重复编写if语句和抛出空指针异常的麻烦。

要想实现组合,需要两个或多个Lambda表达式即可,而andThen的语义正是“一步接一步”操作。例如两个步骤组合的情况:

import java.util.function.Consumer;

public class Demo10ConsumerAndThen {
    private static void consumeString(Consumer<String> one, Consumer<String> two) {
        one.andThen(two).accept("Hello");
    }

    public static void main(String[] args) {
        consumeString(
            s -> System.out.println(s.toUpperCase()),
            s -> System.out.println(s.toLowerCase()));
    }
}

运行结果将会首先打印完全大写的HELLO,然后打印完全小写的hello。当然,通过链式写法可以实现更多步骤的组合。

3.4 练习:格式化打印信息

题目

下面的字符串数组当中存有多条信息,请按照格式“姓名:XX。性别:XX。”的格式将信息打印出来。要求将打印姓名的动作作为第一个Consumer接口的Lambda实例,将打印性别的动作作为第二个Consumer接口的Lambda实例,将两个Consumer接口按照顺序“拼接”到一起。

public static void main(String[] args) {
    String[] array = { "迪丽热巴,女", "古力娜扎,女", "马尔扎哈,男" };
}

解答

import java.util.function.Consumer;

public class DemoConsumer {
    public static void main(String[] args) {
        String[] array = { "迪丽热巴,女", "古力娜扎,女", "马尔扎哈,男" };
        printInfo(s -> System.out.print("姓名:" + s.split(",")[0]),
                  s -> System.out.println("。性别:" + s.split(",")[1] + "。"),
                  array);
    }

    private static void printInfo(Consumer<String> one, Consumer<String> two, String[] array) {
        for (String info : array) {
            one.andThen(two).accept(info); // 姓名:迪丽热巴。性别:女。
        }
    }
}

3.5 Predicate接口

有时候我们需要对某种类型的数据进行判断,从而得到一个boolean值结果。这时可以使用java.util.function.Predicate<T>接口。

抽象方法:test

Predicate接口中包含一个抽象方法:boolean test(T t)。用于条件判断的场景:

import java.util.function.Predicate;

public class Demo15PredicateTest {
    private static void method(Predicate<String> predicate) {
        boolean veryLong = predicate.test("HelloWorld");
        System.out.println("字符串很长吗:" + veryLong);
    }

    public static void main(String[] args) {
        method(s -> s.length() > 5);
    }
}

条件判断的标准是传入的Lambda表达式逻辑,此处为只要字符串长度大于5则认为很长。

默认方法:and

既然是条件判断,就会存在与、或、非三种常见的逻辑关系。其中将两个Predicate条件使用“与”逻辑连接起来实现“并且”的效果时,可以使用default方法and。其JDK源码为:

default Predicate<T> and(Predicate<? super T> other) {
    Objects.requireNonNull(other);
    return (t) -> test(t) && other.test(t);
}

如果要判断一个字符串既要包含大写“H”,又要包含大写“W”,那么:

import java.util.function.Predicate;

public class Demo16PredicateAnd {
    private static void method(Predicate<String> one, Predicate<String> two) {
        boolean isValid = one.and(two).test("Helloworld");
        System.out.println("字符串符合要求吗:" + isValid);
    }

    public static void main(String[] args) {
        method(s -> s.contains("H"), s -> s.contains("W"));
    }
}

默认方法:or

and的“与”类似,默认方法or实现逻辑关系中的“”。JDK源码为:

default Predicate<T> or(Predicate<? super T> other) {
    Objects.requireNonNull(other);
    return (t) -> test(t) || other.test(t);
}

如果希望实现逻辑“字符串包含大写H或者包含大写W”,那么代码只需要将“and”修改为“or”名称即可,其他都不变:

import java.util.function.Predicate;

public class Demo16PredicateAnd {
    private static void method(Predicate<String> one, Predicate<String> two) {
        boolean isValid = one.or(two).test("Helloworld");
        System.out.println("字符串符合要求吗:" + isValid);
    }

    public static void main(String[] args) {
        method(s -> s.contains("H"), s -> s.contains("W"));
    }
}

默认方法:negate

“与”、“或”已经了解了,剩下的“非”(取反)也会简单。默认方法negate的JDK源代码为:

default Predicate<T> negate() {
    return (t) -> !test(t);
}

从实现中很容易看出,它是执行了test方法之后,对结果boolean值进行“!”取反而已。一定要在test方法调用之前调用negate方法,正如andor方法一样:

import java.util.function.Predicate;

public class Demo17PredicateNegate {
    private static void method(Predicate<String> predicate) {
        boolean veryLong = predicate.negate().test("HelloWorld");
        System.out.println("字符串很长吗:" + veryLong);
    }

    public static void main(String[] args) {
        method(s -> s.length() < 5);
    }
}

3.6 练习:集合信息筛选

题目

数组当中有多条“姓名+性别”的信息如下,请通过Predicate接口的拼装将符合要求的字符串筛选到集合ArrayList中,需要同时满足两个条件:

  1. 必须为女生。
  2. 姓名为4个字。

    public class DemoPredicate {
    public static void main(String[] args) {
    String[] array = { “迪丽热巴,女”, “古力娜扎,女”, “马尔扎哈,男”, “赵丽颖,女” };
    }
    }

解答

import java.util.ArrayList;
import java.util.List;
import java.util.function.Predicate;

public class DemoPredicate {
    public static void main(String[] args) {
        String[] array = { "迪丽热巴,女", "古力娜扎,女", "马尔扎哈,男", "赵丽颖,女" };
        List<String> list = filter(array,
                                   s -> "女".equals(s.split(",")[1]),
                                   s -> s.split(",")[0].length() == 4);
        System.out.println(list);
    }

    private static List<String> filter(String[] array, Predicate<String> one, 
                                   Predicate<String> two) {
        List<String> list = new ArrayList<>();
        for (String info : array) {
            if (one.and(two).test(info)) {
                list.add(info);
            }
        }
        return list;
    }
}

3.7 Function接口

java.util.function.Function<T,R>接口用来根据一个类型的数据得到另一个类型的数据,前者称为前置条件,后者称为后置条件。

抽象方法:apply

Function接口中最主要的抽象方法为:R apply(T t),根据类型T的参数获取类型R的结果。

使用的场景例如:将String类型转换为Integer类型。

import java.util.function.Function;

public class Demo11FunctionApply {
    private static void method(Function<String, Integer> function) {
        int num = function.apply("10");
        System.out.println(num + 20);
    }

    public static void main(String[] args) {
        method(s -> Integer.parseInt(s));
    }
}

当然,最好是通过方法引用的写法。

默认方法:andThen

Function接口中有一个默认的andThen方法,用来进行组合操作。JDK源代码如:

default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
    Objects.requireNonNull(after);
    return (T t) -> after.apply(apply(t));
}

该方法同样用于“先做什么,再做什么”的场景,和Consumer中的andThen差不多:

import java.util.function.Function;

public class Demo12FunctionAndThen {
    private static void method(Function<String, Integer> one, Function<Integer, Integer> two) {
        int num = one.andThen(two).apply("10");
        System.out.println(num + 20);
    }

    public static void main(String[] args) {
        method(str->Integer.parseInt(str)+10, i -> i *= 10);
    }
}

第一个操作是将字符串解析成为int数字,第二个操作是乘以10。两个操作通过andThen按照前后顺序组合到了一起。

请注意,Function的前置条件泛型和后置条件泛型可以相同。

3.8 练习:自定义函数模型拼接

题目

请使用Function进行函数模型的拼接,按照顺序需要执行的多个函数操作为:

String str = "赵丽颖,20";
  1. 将字符串截取数字年龄部分,得到字符串;
  2. 将上一步的字符串转换成为int类型的数字;
  3. 将上一步的int数字累加100,得到结果int数字。

解答

import java.util.function.Function;

public class DemoFunction {
    public static void main(String[] args) {
        String str = "赵丽颖,20";
        int age = getAgeNum(str, s -> s.split(",")[1],
                            s ->Integer.parseInt(s),
                            n -> n += 100);
        System.out.println(age);
    }

    private static int getAgeNum(String str, Function<String, String> one,
                                 Function<String, Integer> two,
                                 Function<Integer, Integer> three) {
        return one.andThen(two).andThen(three).apply(str);
    }
}

第四章 Stream流

说到Stream便容易想到I/O Stream,而实际上,谁规定“流”就一定是“IO流”呢?在Java 8中,得益于Lambda所带来的函数式编程,引入了一个全新的Stream概念,用于解决已有集合类库既有的弊端。

4.1 引言

传统集合的多步遍历代码

几乎所有的集合(如Collection接口或Map接口等)都支持直接或间接的遍历操作。而当我们需要对集合中的元素进行操作的时候,除了必需的添加、删除、获取外,最典型的就是集合遍历。例如:

import java.util.ArrayList;
import java.util.List;

public class Demo01ForEach {
    public static void main(String[] args) {
        List<String> list = new ArrayList<>();
        list.add("张无忌");
        list.add("周芷若");
        list.add("赵敏");
        list.add("张强");
        list.add("张三丰");
        for (String name : list) {
            System.out.println(name);
        }
    }  
}

这是一段非常简单的集合遍历操作:对集合中的每一个字符串都进行打印输出操作。

循环遍历的弊端

Java 8的Lambda让我们可以更加专注于做什么(What),而不是怎么做(How),这点此前已经结合内部类进行了对比说明。现在,我们仔细体会一下上例代码,可以发现:

  • for循环的语法就是“怎么做
  • for循环的循环体才是“做什么

为什么使用循环?因为要进行遍历。但循环是遍历的唯一方式吗?遍历是指每一个元素逐一进行处理,而并不是从第一个到最后一个顺次处理的循环。前者是目的,后者是方式。

试想一下,如果希望对集合中的元素进行筛选过滤:

  1. 将集合A根据条件一过滤为子集B
  2. 然后再根据条件二过滤为子集C

那怎么办?在Java 8之前的做法可能为:

import java.util.ArrayList;
import java.util.List;

public class Demo02NormalFilter {
    public static void main(String[] args) {
        List<String> list = new ArrayList<>();
        list.add("张无忌");
        list.add("周芷若");
        list.add("赵敏");
        list.add("张强");
        list.add("张三丰");

        List<String> zhangList = new ArrayList<>();
        for (String name : list) {
            if (name.startsWith("张")) {
                zhangList.add(name);
            }
        }

        List<String> shortList = new ArrayList<>();
        for (String name : zhangList) {
            if (name.length() == 3) {
                shortList.add(name);
            }
        }

        for (String name : shortList) {
            System.out.println(name);
        }
    }
}

这段代码中含有三个循环,每一个作用不同:

  1. 首先筛选所有姓张的人;
  2. 然后筛选名字有三个字的人;
  3. 最后进行对结果进行打印输出。

每当我们需要对集合中的元素进行操作的时候,总是需要进行循环、循环、再循环。这是理所当然的么?不是。循环是做事情的方式,而不是目的。另一方面,使用线性循环就意味着只能遍历一次。如果希望再次遍历,只能再使用另一个循环从头开始。

Stream的更优写法

下面来看一下借助Java 8的Stream API,什么才叫优雅:

import java.util.ArrayList;
import java.util.List;

public class Demo03StreamFilter {
    public static void main(String[] args) {
        List<String> list = new ArrayList<>();
        list.add("张无忌");
        list.add("周芷若");
        list.add("赵敏");
        list.add("张强");
        list.add("张三丰");

        list.stream()
            .filter(s -> s.startsWith("张"))
            .filter(s -> s.length() == 3)
            .forEach(System.out::println);
    }
}

直接阅读代码的字面意思即可完美展示无关逻辑方式的语义:获取流、过滤姓张、过滤长度为3、逐一打印。代码中并没有体现使用线性循环或是其他任何算法进行遍历,我们真正要做的事情内容被更好地体现在代码中。

4.2 流式思想概述

注意:请暂时忘记对传统IO流的固有印象!

整体来看,流式思想类似于工厂车间的“生产流水线”。

当需要对多个元素进行操作(特别是多步操作)的时候,考虑到性能及便利性,我们应该首先拼好一个“模型”步骤方案,然后再按照方案去执行它。

这张图中展示了过滤、映射、跳过、计数等多步操作,这是一种集合元素的处理方案,而方案就是一种“函数模型”。图中的每一个方框都是一个“流”,调用指定的方法,可以从一个流模型转换为另一个流模型。而最右侧的数字3是最终结果。

这里的filtermapskip都是在对函数模型进行操作,集合元素并没有真正被处理。只有当终结方法count执行的时候,整个模型才会按照指定策略执行操作。而这得益于Lambda的延迟执行特性。

备注:“Stream流”其实是一个集合元素的函数模型,它并不是集合,也不是数据结构,其本身并不存储任何元素(或其地址值)。

Stream(流)是一个来自数据源的元素队列

  • 元素是特定类型的对象,形成一个队列。 Java中的Stream并不会存储元素,而是按需计算。
  • 数据源 流的来源。 可以是集合,数组 等。

和以前的Collection操作不同, Stream操作还有两个基础的特征:

  • Pipelining: 中间操作都会返回流对象本身。 这样多个操作可以串联成一个管道, 如同流式风格(fluent style)。 这样做可以对操作进行优化, 比如延迟执行(laziness)和短路( short-circuiting)。
  • 内部迭代: 以前对集合遍历都是通过Iterator或者增强for的方式, 显式的在集合外部进行迭代, 这叫做外部迭代。 Stream提供了内部迭代的方式,流可以直接调用遍历方法。

当使用一个流的时候,通常包括三个基本步骤:获取一个数据源(source)→ 数据转换→执行操作获取想要的结果,每次转换原有 Stream 对象不改变,返回一个新的 Stream 对象(可以有多次转换),这就允许对其操作可以像链条一样排列,变成一个管道。

4.3 获取流

java.util.stream.Stream<T>是Java 8新加入的最常用的流接口。(这并不是一个函数式接口。)

获取一个流非常简单,有以下几种常用的方式:

  • 所有的Collection集合都可以通过stream默认方法获取流;
  • Stream接口的静态方法of可以获取数组对应的流。

根据Collection获取流

首先,java.util.Collection接口中加入了default方法stream用来获取流,所以其所有实现类均可获取流。

import java.util.*;
import java.util.stream.Stream;

public class Demo04GetStream {
    public static void main(String[] args) {
        List<String> list = new ArrayList<>();
        // ...
        Stream<String> stream1 = list.stream();

        Set<String> set = new HashSet<>();
        // ...
        Stream<String> stream2 = set.stream();

        Vector<String> vector = new Vector<>();
        // ...
        Stream<String> stream3 = vector.stream();
    }
}

根据Map获取流

java.util.Map接口不是Collection的子接口,且其K-V数据结构不符合流元素的单一特征,所以获取对应的流需要分key、value或entry等情况:

import java.util.HashMap;
import java.util.Map;
import java.util.stream.Stream;

public class Demo05GetStream {
    public static void main(String[] args) {
        Map<String, String> map = new HashMap<>();
        // ...
        Stream<String> keyStream = map.keySet().stream();
        Stream<String> valueStream = map.values().stream();
        Stream<Map.Entry<String, String>> entryStream = map.entrySet().stream();
    }
}

根据数组获取流

如果使用的不是集合或映射而是数组,由于数组对象不可能添加默认方法,所以Stream接口中提供了静态方法of,使用很简单:

import java.util.stream.Stream;

public class Demo06GetStream {
    public static void main(String[] args) {
        String[] array = { "张无忌", "张翠山", "张三丰", "张一元" };
        Stream<String> stream = Stream.of(array);
    }
}

备注:of方法的参数其实是一个可变参数,所以支持数组。

4.4 常用方法

流模型的操作很丰富,这里介绍一些常用的API。这些方法可以被分成两种:

  • 延迟方法:返回值类型仍然是Stream接口自身类型的方法,因此支持链式调用。(除了终结方法外,其余方法均为延迟方法。)

  • 终结方法:返回值类型不再是Stream接口自身类型的方法,因此不再支持类似StringBuilder那样的链式调用。本小节中,终结方法包括countforEach方法。

备注:本小节之外的更多方法,请自行参考API文档。

逐一处理:forEach

虽然方法名字叫forEach,但是与for循环中的“for-each”昵称不同。

void forEach(Consumer<? super T> action);

该方法接收一个Consumer接口函数,会将每一个流元素交给该函数进行处理。

复习Consumer接口

java.util.function.Consumer<T>接口是一个消费型接口。
Consumer接口中包含抽象方法void accept(T t),意为消费一个指定泛型的数据。

基本使用:

import java.util.stream.Stream;

public class Demo12StreamForEach {
    public static void main(String[] args) {
        Stream<String> stream = Stream.of("张无忌", "张三丰", "周芷若");
        stream.forEach(name-> System.out.println(name));
    }
}

过滤:filter

可以通过filter方法将一个流转换成另一个子集流。方法签名:

Stream<T> filter(Predicate<? super T> predicate);

该接口接收一个Predicate函数式接口参数(可以是一个Lambda或方法引用)作为筛选条件。

复习Predicate接口

在上面我们已经学习过java.util.stream.Predicate函数式接口,其中唯一的抽象方法为:

boolean test(T t);

该方法将会产生一个boolean值结果,代表指定的条件是否满足。如果结果为true,那么Stream流的filter方法将会留用元素;如果结果为false,那么filter方法将会舍弃元素。

基本使用

Stream流中的filter方法基本使用的代码如:

import java.util.stream.Stream;

public class Demo07StreamFilter {
    public static void main(String[] args) {
        Stream<String> original = Stream.of("张无忌", "张三丰", "周芷若");
        Stream<String> result = original.filter(s -> s.startsWith("张"));
    }
}

在这里通过Lambda表达式来指定了筛选的条件:必须姓张。

映射:map

如果需要将流中的元素映射到另一个流中,可以使用map方法。方法签名:

<R> Stream<R> map(Function<? super T, ? extends R> mapper);

该接口需要一个Function函数式接口参数,可以将当前流中的T类型数据转换为另一种R类型的流。

复习Function接口

在上面我们已经学习过java.util.stream.Function函数式接口,其中唯一的抽象方法为:

R apply(T t);

这可以将一种T类型转换成为R类型,而这种转换的动作,就称为“映射”。

基本使用

Stream流中的map方法基本使用的代码如:

import java.util.stream.Stream;

public class Demo08StreamMap {
    public static void main(String[] args) {
        Stream<String> original = Stream.of("10", "12", "18");
        Stream<Integer> result = original.map(str->Integer.parseInt(str));
    }
}

这段代码中,map方法的参数通过方法引用,将字符串类型转换成为了int类型(并自动装箱为Integer类对象)。

统计个数:count

正如旧集合Collection当中的size方法一样,流提供count方法来数一数其中的元素个数:

long count();

该方法返回一个long值代表元素个数(不再像旧集合那样是int值)。基本使用:

import java.util.stream.Stream;

public class Demo09StreamCount {
    public static void main(String[] args) {
        Stream<String> original = Stream.of("张无忌", "张三丰", "周芷若");
        Stream<String> result = original.filter(s -> s.startsWith("张"));
        System.out.println(result.count()); // 2
    }
}

取用前几个:limit

limit方法可以对流进行截取,只取用前n个。方法签名:

Stream<T> limit(long maxSize);

参数是一个long型,如果集合当前长度大于参数则进行截取;否则不进行操作。基本使用:

import java.util.stream.Stream;

public class Demo10StreamLimit {
    public static void main(String[] args) {
        Stream<String> original = Stream.of("张无忌", "张三丰", "周芷若");
        Stream<String> result = original.limit(2);
        System.out.println(result.count()); // 2
    }
}

跳过前几个:skip

如果希望跳过前几个元素,可以使用skip方法获取一个截取之后的新流:

Stream<T> skip(long n);

如果流的当前长度大于n,则跳过前n个;否则将会得到一个长度为0的空流。基本使用:

import java.util.stream.Stream;

public class Demo11StreamSkip {
    public static void main(String[] args) {
        Stream<String> original = Stream.of("张无忌", "张三丰", "周芷若");
        Stream<String> result = original.skip(2);
        System.out.println(result.count()); // 1
    }
}

组合:concat

如果有两个流,希望合并成为一个流,那么可以使用Stream接口的静态方法concat

static <T> Stream<T> concat(Stream<? extends T> a, Stream<? extends T> b)

备注:这是一个静态方法,与java.lang.String当中的concat方法是不同的。

该方法的基本使用代码如:

import java.util.stream.Stream;

public class Demo12StreamConcat {
    public static void main(String[] args) {
        Stream<String> streamA = Stream.of("张无忌");
        Stream<String> streamB = Stream.of("张翠山");
        Stream<String> result = Stream.concat(streamA, streamB);
    }
}

4.5 练习:集合元素处理(传统方式)

题目

现在有两个ArrayList集合存储队伍当中的多个成员姓名,要求使用传统的for循环(或增强for循环)依次进行以下若干操作步骤:

  1. 第一个队伍只要名字为3个字的成员姓名;存储到一个新集合中。
  2. 第一个队伍筛选之后只要前3个人;存储到一个新集合中。
  3. 第二个队伍只要姓张的成员姓名;存储到一个新集合中。
  4. 第二个队伍筛选之后不要前2个人;存储到一个新集合中。
  5. 将两个队伍合并为一个队伍;存储到一个新集合中。
  6. 根据姓名创建Person对象;存储到一个新集合中。
  7. 打印整个队伍的Person对象信息。

两个队伍(集合)的代码如下:

import java.util.ArrayList;
import java.util.List;

public class DemoArrayListNames {
    public static void main(String[] args) {
    //第一支队伍
        ArrayList<String> one = new ArrayList<>();

        one.add("迪丽热巴");
        one.add("宋远桥");
        one.add("苏星河");
        one.add("石破天");
        one.add("石中玉");
        one.add("老子");
        one.add("庄子");
        one.add("洪七公");

        //第二支队伍
        ArrayList<String> two = new ArrayList<>();
        two.add("古力娜扎");
        two.add("张无忌");
        two.add("赵丽颖");
        two.add("张三丰");
        two.add("尼古拉斯赵四");
        two.add("张天爱");
        two.add("张二狗");
        // ....
    }
}

Person类的代码为:

public class Person {

    private String name;

    public Person() {}

    public Person(String name) {
        this.name = name;
    }

    @Override
    public String toString() {
        return "Person{name='" + name + "'}";
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }
}

解答

既然使用传统的for循环写法,那么:

public class DemoArrayListNames {
    public static void main(String[] args) {
        List<String> one = new ArrayList<>();
        // ...

        List<String> two = new ArrayList<>();
        // ...

        // 第一个队伍只要名字为3个字的成员姓名;
        List<String> oneA = new ArrayList<>();
        for (String name : one) {
            if (name.length() == 3) {
                oneA.add(name);
            }
        }

        // 第一个队伍筛选之后只要前3个人;
        List<String> oneB = new ArrayList<>();
        for (int i = 0; i < 3; i++) {
            oneB.add(oneA.get(i));
        }

        // 第二个队伍只要姓张的成员姓名;
        List<String> twoA = new ArrayList<>();
        for (String name : two) {
            if (name.startsWith("张")) {
                twoA.add(name);
            }
        }

        // 第二个队伍筛选之后不要前2个人;
        List<String> twoB = new ArrayList<>();
        for (int i = 2; i < twoA.size(); i++) {
            twoB.add(twoA.get(i));
        }

        // 将两个队伍合并为一个队伍;
        List<String> totalNames = new ArrayList<>();
        totalNames.addAll(oneB);
        totalNames.addAll(twoB);

        // 根据姓名创建Person对象;
        List<Person> totalPersonList = new ArrayList<>();
        for (String name : totalNames) {
            totalPersonList.add(new Person(name));
        }

        // 打印整个队伍的Person对象信息。
        for (Person person : totalPersonList) {
            System.out.println(person);
        }
    }
}

运行结果为:

Person{name='宋远桥'}
Person{name='苏星河'}
Person{name='石破天'}
Person{name='张天爱'}
Person{name='张二狗'}

4.6 练习:集合元素处理(Stream方式)

题目

将上一题当中的传统for循环写法更换为Stream流式处理方式。两个集合的初始内容不变,Person类的定义也不变。

解答

等效的Stream流式处理代码为:

import java.util.ArrayList;
import java.util.List;
import java.util.stream.Stream;

public class DemoStreamNames {
    public static void main(String[] args) {
        List<String> one = new ArrayList<>();
        // ...

        List<String> two = new ArrayList<>();
        // ...

        // 第一个队伍只要名字为3个字的成员姓名;
        // 第一个队伍筛选之后只要前3个人;
        Stream<String> streamOne = one.stream().filter(s -> s.length() == 3).limit(3);

        // 第二个队伍只要姓张的成员姓名;
        // 第二个队伍筛选之后不要前2个人;
        Stream<String> streamTwo = two.stream().filter(s -> s.startsWith("张")).skip(2);

        // 将两个队伍合并为一个队伍;
        // 根据姓名创建Person对象;
        // 打印整个队伍的Person对象信息。
        Stream.concat(streamOne, streamTwo).map(Person::new).forEach(System.out::println);
    }
}

运行效果完全一样:

Person{name='宋远桥'}
Person{name='苏星河'}
Person{name='石破天'}
Person{name='张天爱'}
Person{name='张二狗'}

双冒号(::)运算符在Java 8中被用作方法引用(method reference),方法引用是与lambda表达式相关的一个重要特性。它提供了一种不执行方法的方法。在下面详细介绍。

第五章 方法引用

在使用Lambda表达式的时候,我们实际上传递进去的代码就是一种解决方案:拿什么参数做什么操作。那么考虑一种情况:如果我们在Lambda中所指定的操作方案,已经有地方存在相同方案,那是否还有必要再写重复逻辑?

5.1 冗余的Lambda场景

来看一个简单的函数式接口以应用Lambda表达式:

@FunctionalInterface
public interface Printable {
    void print(String str);
}

Printable接口当中唯一的抽象方法print接收一个字符串参数,目的就是为了打印显示它。那么通过Lambda来使用它的代码很简单:

public class Demo01PrintSimple {
    private static void printString(Printable data) {
        data.print("Hello, World!");
    }

    public static void main(String[] args) {
        printString(s -> System.out.println(s));
    }
}

其中printString方法只管调用Printable接口的print方法,而并不管print方法的具体实现逻辑会将字符串打印到什么地方去。而main方法通过Lambda表达式指定了函数式接口Printable的具体操作方案为:拿到String(类型可推导,所以可省略)数据后,在控制台中输出它

5.2 问题分析

这段代码的问题在于,对字符串进行控制台打印输出的操作方案,明明已经有了现成的实现,那就是System.out对象中的println(String)方法。既然Lambda希望做的事情就是调用println(String)方法,那何必自己手动调用呢?

5.3 用方法引用改进代码

能否省去Lambda的语法格式(尽管它已经相当简洁)呢?只要“引用”过去就好了:

public class Demo02PrintRef {
    private static void printString(Printable data) {
        data.print("Hello, World!");
    }

    public static void main(String[] args) {
        printString(System.out::println);
    }
}

其中的双冒号::写法,这被称为“方法引用”,而双冒号是一种新的语法。

5.4 方法引用符

双冒号::为引用运算符,而它所在的表达式被称为方法引用。如果Lambda要表达的函数方案已经存在于某个方法的实现中,那么则可以通过双冒号来引用该方法作为Lambda的替代者。

语义分析

例如上例中,System.out对象中有一个重载的println(String)方法恰好就是我们所需要的。那么对于printString方法的函数式接口参数,对比下面两种写法,完全等效:

  • Lambda表达式写法:s -> System.out.println(s)
  • 方法引用写法:System.out::println

第一种语义是指:拿到参数之后经Lambda之手,继而传递给System.out.println方法去处理。

第二种等效写法的语义是指:直接让System.out中的println方法来取代Lambda。两种写法的执行效果完全一样,而第二种方法引用的写法复用了已有方案,更加简洁。

注:Lambda 中 传递的参数 一定是方法引用中 的那个方法可以接收的类型,否则会抛出异常

推导与省略

如果使用Lambda,那么根据“可推导就是可省略”的原则,无需指定参数类型,也无需指定的重载形式——它们都将被自动推导。而如果使用方法引用,也是同样可以根据上下文进行推导。

函数式接口是Lambda的基础,而方法引用是Lambda的孪生兄弟。

下面这段代码将会调用println方法的不同重载形式,将函数式接口改为int类型的参数:

@FunctionalInterface
public interface PrintableInteger {
    void print(int str);
}

由于上下文变了之后可以自动推导出唯一对应的匹配重载,所以方法引用没有任何变化:

public class Demo03PrintOverload {
    private static void printInteger(PrintableInteger data) {
        data.print(1024);
    }

    public static void main(String[] args) {
        printInteger(System.out::println);
    }
}

这次方法引用将会自动匹配到println(int)的重载形式。

5.5 通过对象名引用成员方法

这是最常见的一种用法,与上例相同。如果一个类中已经存在了一个成员方法:

public class MethodRefObject {
    public void printUpperCase(String str) {
        System.out.println(str.toUpperCase());
    }
}

函数式接口仍然定义为:

@FunctionalInterface
public interface Printable {
    void print(String str);
}

那么当需要使用这个printUpperCase成员方法来替代Printable接口的Lambda的时候,已经具有了MethodRefObject类的对象实例,则可以通过对象名引用成员方法,代码为:

public class Demo04MethodRef {
    private static void printString(Printable lambda) {
        lambda.print("Hello");
    }

    public static void main(String[] args) {
        MethodRefObject obj = new MethodRefObject();
        printString(obj::printUpperCase);
    }
}

5.6 通过类名称引用静态方法

由于在java.lang.Math类中已经存在了静态方法abs,所以当我们需要通过Lambda来调用该方法时,有两种写法。首先是函数式接口:

@FunctionalInterface
public interface Calcable {
    int calc(int num);
}

第一种写法是使用Lambda表达式:

public class Demo05Lambda {
    private static void method(int num, Calcable lambda) {
        System.out.println(lambda.calc(num));
    }

    public static void main(String[] args) {
        method(-10, n -> Math.abs(n));
    }
}

但是使用方法引用的更好写法是:

public class Demo06MethodRef {
    private static void method(int num, Calcable lambda) {
        System.out.println(lambda.calc(num));
    }

    public static void main(String[] args) {
        method(-10, Math::abs);
    }
}

在这个例子中,下面两种写法是等效的:

  • Lambda表达式:n -> Math.abs(n)
  • 方法引用:Math::abs

5.7 通过super引用成员方法

如果存在继承关系,当Lambda中需要出现super调用时,也可以使用方法引用进行替代。首先是函数式接口:

@FunctionalInterface
public interface Greetable {
    void greet();
}

然后是父类Human的内容:

public class Human {
    public void sayHello() {
        System.out.println("Hello!");
    }
}

最后是子类Man的内容,其中使用了Lambda的写法:

public class Man extends Human {
    @Override
    public void sayHello() {
        System.out.println("大家好,我是Man!");
    }

    //定义方法method,参数传递Greetable接口
    public void method(Greetable g){
        g.greet();
    }

    public void show(){
        //调用method方法,使用Lambda表达式
        method(()->{
            //创建Human对象,调用sayHello方法
            new Human().sayHello();
        });
        //简化Lambda
        method(()->new Human().sayHello());
        //使用super关键字代替父类对象
        method(()->super.sayHello());
    }
}

但是如果使用方法引用来调用父类中的sayHello方法会更好,例如另一个子类Woman

public class Man extends Human {
    @Override
    public void sayHello() {
        System.out.println("大家好,我是Man!");
    }

    //定义方法method,参数传递Greetable接口
    public void method(Greetable g){
        g.greet();
    }

    public void show(){
        method(super::sayHello);
    }
}

在这个例子中,下面两种写法是等效的:

  • Lambda表达式:() -> super.sayHello()
  • 方法引用:super::sayHello

5.8 通过this引用成员方法

this代表当前对象,如果需要引用的方法就是当前类中的成员方法,那么可以使用“this::成员方法”的格式来使用方法引用。首先是简单的函数式接口:

@FunctionalInterface
public interface Richable {
    void buy();
}

下面是一个丈夫Husband类:

public class Husband {
    private void marry(Richable lambda) {
        lambda.buy();
    }

    public void beHappy() {
        marry(() -> System.out.println("买套房子"));
    }
}

开心方法beHappy调用了结婚方法marry,后者的参数为函数式接口Richable,所以需要一个Lambda表达式。但是如果这个Lambda表达式的内容已经在本类当中存在了,则可以对Husband丈夫类进行修改:

public class Husband {
    private void buyHouse() {
        System.out.println("买套房子");
    }

    private void marry(Richable lambda) {
        lambda.buy();
    }

    public void beHappy() {
        marry(() -> this.buyHouse());
    }
}

如果希望取消掉Lambda表达式,用方法引用进行替换,则更好的写法为:

public class Husband {
    private void buyHouse() {
        System.out.println("买套房子");
    }

    private void marry(Richable lambda) {
        lambda.buy();
    }

    public void beHappy() {
        marry(this::buyHouse);
    }
}

在这个例子中,下面两种写法是等效的:

  • Lambda表达式:() -> this.buyHouse()
  • 方法引用:this::buyHouse

5.9 类的构造器引用

由于构造器的名称与类名完全一样,并不固定。所以构造器引用使用类名称::new的格式表示。首先是一个简单的Person类:

public class Person {
    private String name;

    public Person(String name) {
        this.name = name;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }
}

然后是用来创建Person对象的函数式接口:

public interface PersonBuilder {
    Person buildPerson(String name);
}

要使用这个函数式接口,可以通过Lambda表达式:

public class Demo09Lambda {
    public static void printName(String name, PersonBuilder builder) {
        System.out.println(builder.buildPerson(name).getName());
    }

    public static void main(String[] args) {
        printName("赵丽颖", name -> new Person(name));
    }
}

但是通过构造器引用,有更好的写法:

public class Demo10ConstructorRef {
    public static void printName(String name, PersonBuilder builder) {
        System.out.println(builder.buildPerson(name).getName());
    }

    public static void main(String[] args) {
        printName("赵丽颖", Person::new);
    }
}

在这个例子中,下面两种写法是等效的:

  • Lambda表达式:name -> new Person(name)
  • 方法引用:Person::new

5.10 数组的构造器引用

数组也是Object的子类对象,所以同样具有构造器,只是语法稍有不同。如果对应到Lambda的使用场景中时,需要一个函数式接口:

@FunctionalInterface
public interface ArrayBuilder {
    int[] buildArray(int length);
}

在应用该接口的时候,可以通过Lambda表达式:

public class Demo11ArrayInitRef {   
    private static int[] initArray(int length, ArrayBuilder builder) {
        return builder.buildArray(length);
    }

    public static void main(String[] args) {
        int[] array = initArray(10, length -> new int[length]);
    }
}

但是更好的写法是使用数组的构造器引用:

public class Demo12ArrayInitRef {
    private static int[] initArray(int length, ArrayBuilder builder) {
        return builder.buildArray(length);
    }

    public static void main(String[] args) {
        int[] array = initArray(10, int[]::new);
    }
}

在这个例子中,下面两种写法是等效的:

  • Lambda表达式:length -> new int[length]
  • 方法引用:int[]::new

版权声明:本文为p1ng原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/p1ng/p/12286944.html