为什么传统 CNN 适用于 CV 任务,RNN 适用于 NLP 任务

从模型特点上来说:

  • 对于 CNN 每一个卷积核都可以看作是一个滤波器,卷积运算的本质是互相关运算,每个卷积核仅对于具有特定特征具有较大的激活值,而且 CNN 有参数共享和局部连接的特点,能够提取图像上不同位置的同一个特征,即 CNN 具有平移不变性

  • RNN 的特点在于其是一个时序模型,在对每个神经元不仅可以接收当前时刻的输入信息,还将接收上一个时刻的该神经元的输出信息,具有短期记忆能力。这在用于 NLP 任务时相当于隐含着建立了一个语言模型,这对词序具有很强的区分能力。而 CNN 和 DNN 均类似词袋模型,丢失的词序特征。

从数据特征上来说

  • 图像矩阵中的每个元素为图像中的像素值,每个像素与其周围元素都是高度相关的
  • 文本矩阵中的数据为词的 embedding 向量,每个元素在词向量内与词向量间的相邻元素的关联性是不同的,因此 CNN 用于 NLP 任务常使用的是一维卷积

RNN 原理

\(\hat y\) 部分的激活函数可以根据下游任务设置

LSTM 原理

  • 三个门:[output_dim + input_dim, 1]
  • 更新门位置的全连接层:[output_dim + input_dim, output_dim]

GRU 原理

  • 两个门:[output_dim + input_dim, 1]
  • 全连接层:[output_dim + input_dim, output_dim]

RNN BPTT


– 假设$t$时刻的损失函数为$L_t$,以 $W_{aa}$,$W_{ax}$,$W_{ya}$ 为例
$$ \begin{aligned}
&\frac{\delta L_t}{\delta W_{ya}} = \frac{\delta L_3}{\delta \hat{y}_t}\frac{\delta \hat{y}_t}{\delta W_{ya}} \\
&\frac{\delta L_t}{\delta W_{aa}} = \frac{\delta L_t}{\delta \hat{y}_t}\frac{\delta \hat{y}_t}{\delta a_{t}}(\frac{\delta a_{t}}{\delta W_{aa}} + \frac{\delta a_{t}}{\delta a_{t-1}}\frac{\delta a_{t-1}}{\delta W_{aa}} + …)\\
&\frac{\delta L_t}{\delta W_{ax}} = \frac{\delta L_3}{\delta \hat{y}_t}\frac{\delta \hat{y}_t}{\delta a_{t}}(\frac{\delta a_{t}}{\delta W_{ax}} + \frac{\delta a_{t}}{\delta a_{t-1}}\frac{\delta a_{t-1}}{\delta W_{ax}} + …)
\end{aligned}$$

  • 对于任意时刻t对 \(W_x\)\(W_s\) 求偏导的公式为:
\[\begin{aligned}
&\frac{\delta L_t}{\delta W_{aa}} = \sum_{k=0}^{t}\frac{\delta L_t}{\delta y_t}\frac{\delta y_t}{\delta a_t}( \prod_{j=k+1}^t\frac{\delta a_j}{\delta a_{j-1}} ) \frac{\delta a_k}{\delta W_{aa}}\\
&\frac{\delta L_t}{\delta W_{aa}} = \sum_{k=0}^{t}\frac{\delta L_t}{\delta y_t}\frac{\delta y_t}{\delta a_t}( \prod_{j=k+1}^t\frac{\delta a_j}{\delta a_{j-1}} ) \frac{\delta a_k}{\delta W_{aa}}
\end{aligned}\]
  • 其中\(\frac{\delta a_j}{\delta a_{j-1}}\)\(\frac{\delta a_k}{\delta W_{aa}}\)还存在\(tanh’\)的导数项,而\(tanh’\)的值域为\((0, 1)\)。随着时间步的增长,累乘项会趋于 0,出现梯度消失的问题

LSTM 如何解决 RNN 的梯度消失问题

  • RNN 的激活函数为 \(tanh\),而 \(tanh\) 的导数取值范围为 \([0, 1]\),在时间上的反向传播会存在时间上的梯度累乘项,时间步长了会导致梯度累乘而消失
  • LSTM 通过引入全局信息流,在时间维度上引入残差结构,残差结构的引入就使得链式求导过程中引入了一个求和项,从反向传播的求导来看,最多只有两个激活函数的导数累乘,因此远距离的梯度通常都可以正常传播,减弱了梯度消失问题

怎样增加 LSTM 的长距离特征提取能力

  • Dilated RNN:Dilated CNN 为空洞卷积,Dilated RNN 则是在时间维度上空洞,浅层部分的为传统 RNN,每个时间步都循环,深层的循环周期更长,增大时间维度上的“感受野”

版权声明:本文为sandwichnlp原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/sandwichnlp/p/12578733.html