先看一道面试题

在 LeetCode 中有这么一道简单的数组算法题:

// 给定一个整数数组 nums 和一个目标值 target,
// 请你在该数组中找出和为目标值的那两个整数,并返回他们的数组下标。
// 你可以假设每种输入只会对应一个答案。
// 但是,你不能重复利用这个数组中同样的元素。
// 示例:
//    给定 nums = [2, 7, 11, 15], target = 9;
//    因为 nums[0] + nums[1] = 2 + 7 = 9,
//    所以返回 [0, 1]。

对于上述的面试题,对于我们前端开发,不同的解法,有着不同的技术水准。

那么到底有几种常用解法?实践并汇总了以下几种方法:

  • 暴力双 for 循环解法;
  • 单循环 indexOf 优化;
  • 单循环 obj 优化;
  • 单循环 map 优化;
  • 单循环尾递归优化;

暴力双 for 循环破解

// 两层循环判断,找出当前元素cur与target-cur的,满足放入result结果中
function twoSum(nums, target) {
  for (let i = 0; i < nums.length; i++) {
    const cur = nums[i];

    for (let j = 0; j < nums.length; j++) {
      const others = nums[j];
      // 因为是不可以重复利用同样的元素,所以i!==j;
      if (others == target - cur && i !== j) {
        // 因为是我们只找出一个结果,所以我们找到后,直接返回结果
        return [i, j];
      }
    }
  }
  // 如果未找到,返回[]
  return [];
}

// 测试结果
let result = twoSum([2, 7, 11, 15], 9);
console.log(result); // [0,1]  2,7 满足结果,所以返回其下标[0,1]

时间复杂度:O(n^2),可能看似感觉还不错,但是执行时间长,内存占用也不小,当 nums 数组足够大时,它的性能瓶颈就会体现出来。

leetCood 测试结果:

csjg

单循环 indexOf 优化;

// 单循环判断,找出当前元素cur,与target-cur是否相等,满足放入result结果中
function twoSum(nums, target) {
  for (let i = 0; i < nums.length; i++) {
    let cur = nums[i],
      others = target - cur, // 期望目标值
      others_index = nums.indexOf(others);

    // 判断期望目标值是否在nums中,因为不能是它本身,要校验两个下标不能相等
    if (others_index > -1 && i !== others_index) {
      // 因为是我们只找出一个结果,所以我们找到后,直接返回结果
      return [i, others_index];
    }
  }
  // 如果未找到,返回[]
  return [];
}

// 测试结果
let result = twoSum([2, 7, 11, 15], 9);
console.log(result); // [0,1]  2,7 满足结果,所以返回其下标[0,1]

时间复杂度:O(n^2),因为 indexOf()方法的时间复杂度为 O(n),所以和上述暴力破解只是写法上区别了。执行时间,内存占用依然存在可优化的空间。

leetCood 测试结果:

测试结果

单循环 obj 优化:

使用 obj,边存边比较目标差值是否在 obj 中。如果存在,直接返回下标,不存在继续边存边比,直到结束循环;

function twoSum(nums, target) {
  let obj = {};

  for (let i = 0; i < nums.length; i++) {
    if (obj[target - nums[i]] >= 0) {
      return [obj[target - nums[i]], i];
    }
    obj[nums[i]] = i;
  }
  return [];
}
// 测试结果
let result = twoSum([2, 7, 11, 15], 9);
console.log(result); // [0,1]  2,7 满足结果,所以返回其下标[0,1]

时间复杂度:O(n),由于对象键值对 key-value 的优越性,对于作为查找类的算法很有优势。时间复杂度降为原有的一倍,性能会好一些。

leetCood 测试结果(较上优化了 90ms 左右):

测试结果

单循环 map 优化:

上述我们使用了一个对象作为查找的依据,同样的我们可以根据 map 替换,来破解。

function twoSum(nums, target) {
  let map = new Map();

  // 遍历nums 放入 map中
  for (let i = 0; i < nums.length; i++) {
    let value = nums[i];

    map.set(value, i);
  }

  for (let j = 0; j < nums.length - 1; j++) {
    if (map.has(target - nums[j]) && map.get(target - nums[j]) != j) {
      return [j, map.get(target - nums[j])];
    }
  }
  // 不符合,返回空数组
  return [];
}
// 测试结果
let result = twoSum([2, 7, 11, 15], 9);
console.log(result); // [0,1]  2,7 满足结果,所以返回其下标[0,1]

时间复杂度:O(2n),第一次循环时间度 n,第二次为 n*1,故为 O(2n), 由于 map 的特殊数据结构,故作为查找类的算法,相比 obj 具有绝对优势。

leetCood 测试结果(较上再次优化了 近 30ms):

测试结果

obj 尾递归优化;

我们对于上面单循环 obj 做下改造,利用尾递归的方式破解:

var twoSum = function(nums, target, i = 0, objs = {}) {
  const obj = objs; //存在期望数字;
  // 判断obj中是否
  if (obj[target - nums[i]] >= 0) {
    // 存在直接返回两值的下标;
    return [obj[target - nums[i]], i];
  } else {
    // 不存在,存入obj
    obj[nums[i]] = i;
    // 递归继续查找
    if (i < nums.length - 1) {
      // i 自增
      i++;
      return twoSum(nums, target, i, obj);
    } else {
      // 递归结束,未查询到结果
      return [];
    }
  }
};

时间复杂度:O(n),假设我们查找到,则递归的次数应该是最多的为 n,所以时间复杂度 O(n);
递归相比于 for 循环是一种更近层次的查找,在树结构数据、多维数组中我们常用递归思想来处理数据。

leetCood 测试结果(结果为 52ms),多次执行测试大都在 60ms 上下,说明了递归思想的优势:

测试结果

map 尾递归优化破解;

我们同时对单循环 map 的也是用递归,看看会发生什么结果?

var twoSum = function(nums, target, i = 0, maps = new Map()) {
  const map = maps;

  // 判断obj中是否
  if (map.has(target - nums[i])) {
    // 存在直接返回两值的下标;
    return [map.has(target - nums[i]), i];
  } else {
    // 不存在,存入obj
    map.set([nums[i]], i);
    // 递归继续查找
    if (i < nums.length - 1) {
      // i 自增
      i++;
      return twoSum(nums, target, i, map);
    } else {
      // 递归结束,未查询到结果
      return [];
    }
  }
};

时间复杂度:O(n),假设我们查找到,则递归的次数为 n,所以时间复杂度也为 O(n);

leetCood 测试结果(最快结果为 44ms),多次执行测试大都在 60ms 上下,与上一个性能相似:

测试结果

当然,测试结果只是一个参考可能不太准确,不过通过多次测试也是可以看出他们之间的差距的。

总结:

以上我们使用了暴力破解、单循环 obj、单循环 map、obj 尾递归、map 尾递归做了对比。

一般对于数组的算法,几乎都可以使用上次思路来解决,当然我们要知道衡量算法指标时间复杂度 O()、空间复杂度 S()。

空间复杂度:算法的空间复杂度通过计算算法所需的存储空间实现,算法的空间复杂度的计算公式记作:S(n)=O(f(n)),其中,n 为问题的规模,f(n)为语句关于 n 所占存储空间的函数。

通常,我们都是用“时间复杂度”来指运行时间的需求,是用“空间复杂度”指空间需求。

当直接要让我们求“复杂度”时,通常指的是时间复杂度。不过,在一定程度上我们也要考虑算法所需存储空间。

在面试中与实际工作中,简单数组算法的几点经验之谈:

数组去重:使用单循环,结合 obj 或 map 做中间辅助判断;
数组扁平化:使用递归;

树结构的查找与处理:单循环使用 obj/map 做中间辅助判断,同时结合递归思想;

数组的特定重组:除了上述思想外,可能要结合数组常用方法:indexOf(),map(),forEach()或数组高阶函数 filter(),reduce(),sort(),every(),some()等。本文只是抛出一个算法的思路,不再做长篇大论的演示。

// 递归思路
// 最简递归:for循环形式
function recursive_simple(array) {
  for (let i = 0; i < array.length; i++) {
    const item = array[i];

    // 进入递归ifEntry:递归条件,subArray:递归参数
    if (ifEntry) {
      // do something
      recursive_simple(subArray);
    } else {
      // 跳出递归
      // do something
    }
  }
}

// 尾递归
function recursive_tail(array, i = array.length - 1, others) {
  const other = others;
  //do something

  // 进入递归,others:其他参数,可以obj、map等一些中间临时变量
  if (i > 0) {
    // do something
    console.log(i, array[i]);

    i--;
    // 递归调用
    return recursive_tail(array, i, others);
  }
}

涉及方法:

indexOf():检测 searchString 在 string、array 是否存在,不过时间复杂度 O(n);

map:数组的遍历,返回新的数组,需要手动 return 当前 item;对于数组中对象的 key-value 改写比较适合,时间复杂度 O(n);

forEach:改写当前数组,不需要 return,对于直接改写某个数组比较合适;

filter:过滤函数,对于过滤数组中符合某个条件的子项比较合适;

reduce:接收一个函数作为累加器(accumulator),返回具体数值,对于需要对数组某些子项操作的比较合适,比如求和,斐波那契数列等的处理,
reduce(function(total, currentValue, currentIndex, arr), initialValue);

sort:适合数组中,复杂比较关系的,一般用于排序用途;

every:数组迭代方法,对数组中每一项运行给定函数,如果该函数对每一项返回 true,则返回 true;

some:数组迭代方法,对数组中每一项运行给定函数,如果该函数对任一项返回 true,则返回 true,与 every 有区别,如其名:every:每一项,some:任一项;

微信公众号:前端开发那些事儿,欢迎关注!

前端开发那些事儿

版权声明:本文为wiwimi原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/wiwimi/p/12599684.html