前言

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。

1 明确目的

通过访问天猫的网站,先搜索对应的商品,然后爬取它的评论数据。可以作为设计前期的市场调研的数据,帮助很大。

2 爬取评论并储存

(首先要进行登录,获取cookie)搜索你想收集的信息的评价,然后点开对应的产品图片。找到对应的评价的位置。

找到对应的位置之后就可以进行数据的爬取了,但是在爬取的过程中发现始终无法获取对应的数据。判断可能是因为没有添加cookie导致的,但是在添加了cookie之后发现依旧无法解决问题。

最后,发现应该是显示的数据是通过json解析之后显示在网页上的,因此需要多一些步骤来获取真正的爬取链接。

首先在network中,清除掉以往的数据信息,然后将页面进行刷新,复制其中的一条信息,进行搜索。在4中获得链接,并在5中获取到链接。

找到文件里面的访问url、cookie、referer、agent,将其复制在程序里。

大功告成,现在就可以进行数据的爬取了。

import pandas as pd
import requests
import re
import time
data_list = []
for i in range(1,20,1):
    print("正在爬取第" + str(i) + "")
    #构建访问的网址,这个网址可有讲究了
    first = 'https://rate.tmall.com/list_detail_rate.htm?itemId=596452219968&spuId=1240258038&sellerId=1579115485&order=3&currentPage=1'
    last = '&append=0&content=1&tagId=&posi=&picture=&groupId=&ua=098%23E1hvB9vnvPgvUvCkvvvvvjiPn25pQjlhPFSv0jthPmPy6jiPR2MwAjnjRLF9gjlERphvCvvvphmjvpvhvUCvp8wCvvpvvhHhmphvLvUIUkUaQCAwe1O0747BhCka%2BoHoDOvfjLeAnhjEKBmAdXIaUExreTgcnkxb5ah6Hd8ram56D40OdiUDNrBlHd8reC69D70fd3J18heivpvUvvCCWUB0wV0EvpvVvpCmpJ2vKphv8vvvpHwvvvvvvvCmqvvvv4pvvhZLvvmCvvvvBBWvvvjwvvCHhQvvvxQCvpvVvUCvpvvv2QhvCvvvMMGtvpvhvvCvp86CvChh9P2s3QvvC0ODj6KHkoVQROhCvCLwMbra3rMwznsJWxS5gn1Uzvr4486Cvvyv9mQS7Qvvm4p%3D&needFold=0&_ksTS=1585406932472_453&callback=jsonp454'
    url = first + str(i) + last
    #访问的头文件,还带这个cookie
    headers ={
        # 用的哪个浏览器
        'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36',
        # 从哪个页面发出的数据申请,每个网站可能略有不同
        'referer': 'https://detail.tmall.com/item.htm?spm=a220m.1000858.1000725.1.464b6bbfQwJmpT&id=596452219968&skuId=4313616443848&areaId=340700&user_id=1579115485&cat_id=2&is_b=1&rn=2aaf4f3d019121cb4b9c1816fe2eb360',
        # 哪个用户想要看数据,是游客还是注册用户,建议使用登录后的cookie
        'cookie':'tk_trace=1; cna=BPoFF17G1wkCASShM8zuMe/z; dnk=%5Cu6211%5Cu624B%5Cu673A%5Cu9762%5Cu5305; uc1=tag=10&cookie16=UIHiLt3xCS3yM2h4eKHS9lpEOw%3D%3D&cookie14=UoTUP2Hg22VKGQ%3D%3D&cookie15=URm48syIIVrSKA%3D%3D&cookie21=WqG3DMC9Fb5mPLIQo9kR&lng=zh_CN&existShop=false&pas=0; uc3=nk2=rUtEsEAPxFiBAw%3D%3D&vt3=F8dBxd9vfOFX6TF0nIU%3D&lg2=UtASsssmOIJ0bQ%3D%3D&id2=UU20sOBlt5YjsA%3D%3D; tracknick=%5Cu6211%5Cu624B%5Cu673A%5Cu9762%5Cu5305; lid=%E6%88%91%E6%89%8B%E6%9C%BA%E9%9D%A2%E5%8C%85; _l_g_=Ug%3D%3D; uc4=nk4=0%40r7rCJKnwPLZ3%2FwyNCMllICP5es7j&id4=0%40U2%2Fz9fRgFErUiIbdThLAqnTeryYw; unb=2565225077; lgc=%5Cu6211%5Cu624B%5Cu673A%5Cu9762%5Cu5305; cookie1=VyVfQs3fk3Q1AMa82%2BACjr%2B92r264TDI3Q1c5WQuXXw%3D; login=true; cookie17=UU20sOBlt5YjsA%3D%3D; cookie2=1cf0a583503c0e1120b70f4ef312f5c5; _nk_=%5Cu6211%5Cu624B%5Cu673A%5Cu9762%5Cu5305; sgcookie=EilyrHs60A8pXOSQMCPEY; sg=%E5%8C%857f; t=0f46f0f89d1ad6a09a42a2e03e34c8ad; csg=af40d9de; _tb_token_=7e358e863e33f; enc=m7O0wanabkvr3U2e%2B%2FVwjIRhdoivog54aY5f614N4hBpuXKXuZzuCOP8Wqjk%2FohRVNzechJXzRihNyJDnIQHxw%3D%3D; l=dBOQ8BwlQB9FA9pWBOfwVsUBXgbOgIOb8sPzcQtKtICPOq1wBiJPWZ43uHTeCnGVh6JwR3laeFr4BMsXcnV0x6aNa6Fy_1Dmn; isg=BKOjn8dx-fVsPLXByTRwZsHRMuFNmDfaBnKiX9UB34JaFMI2XWiVKt1CDuQatI_S'
    }
    #尝试获取数据(这里的数据应该是从json里面获取的)
    try:
        data = requests.get(url,headers = headers).text
        time.sleep(10)
        result = re.findall('rateContent":"(.*?)"fromMall"',data)
        data_list.extend(result)
    except:
        print("本页爬取失败")
df = pd.DataFrame()
df["评论"] = data_list
df.to_excel("评论_汇总.xlsx")

 

由于天猫会有比较强的反爬机制,因此需要设置睡眠时间,链接也要更新。

以上就是爬取的部分评价,可以通过可视化工具提取关键词并绘制出词云。

3 词云图的制作

首先将原来的数据保存为csv的格式

# df = pd.DataFrame()
# df["review"] = data_list
# df.to_excel("评论_汇总.xlsx")
df = pd.DataFrame()
df["review"] = data_list
df.to_csv("coms.csv",mode="a+",header=None,index=None,encoding="utf-8")

 

之后利用这些数据进行词云的绘制

# @功能:读取csv文件,然后进行绘制词云图
# @日期:2020-03-29
import re
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import pandas as pd
import jieba
import np
from PIL import Image
# 读取原始数据
raw_comments = pd.read_csv('com.csv');raw_comments.head()
# 导入停用词表,这里的stopword是可以自己更改上传的
with open('stopword.txt') as s:
    stopwords = set([line.replace('\n', ' ') for line in s])
# 传入apply的预处理函数,完成中文提取、分词以及多余空格剔除
def preprocessing(c):
    c = [word for word in jieba.cut(' '.join(re.findall('[\u4e00-\u9fa5]+', c))) if word != ' ' and word not in stopwords]
    return ' '.join(c)
# 将所有语料按空格拼接为一整段文字
comments = ' '.join(raw_comments['评论'].apply(preprocessing));comments[:500]
# ---------生产词云----------
usa_mask = np.array(Image.open('flower.png'))
#image_colors = ImageColorGenerator(usa_mask) #读取图片本身颜色,但是这一句有错误
#从文本中生成词云图
wordcloud = WordCloud(background_color='white', # 背景色为白色
                      height=400, # 高度设置为400
                      width=800, # 宽度设置为800
                      scale=1, # 长宽拉伸程度设置为20
                      prefer_horizontal=0.2, # 调整水平显示倾向程度为0.2
                      max_words=500, # 设置最大显示字数为500
                      relative_scaling=0.3, # 设置字体大小与词频的关联程度为0.3
                      max_font_size=50,# 缩小最大字体为50
                      font_path='msyh.ttf',#设置字体为微软雅黑
                      mask=usa_mask#添加蒙版
                    ).generate_from_text(comments)
plt.figure(figsize=[8, 4])
plt.imshow(wordcloud
           #.recolor(color_func=image_colors),alpha=1
)
plt.axis('off')
#保存到本地
plt.savefig('图6.jpg', dpi=600, bbox_inches='tight', quality=95)
plt.show()

 

最后生产的图片:

(猜猜这个图片像什么)

如果你处于想学Python或者正在学习Python,Python的教程不少了吧,但是是最新的吗?说不定你学了可能是两年前人家就学过的内容,在这小编分享一波2020最新的Python教程。获取方式,私信小编 “ 资料 ”,即可免费获取哦!

版权声明:本文为python0921原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/python0921/p/12752095.html