search(7)- elastic4s-search-filter模式
现在我们可以开始探讨ES的核心环节:搜索search了。search又分filter,query两种模式。filter模式即筛选模式:将符合筛选条件的记录作为结果找出来。query模式则分两个步骤:先筛选,然后对每条符合条件记录进行相似度计算。就是多了个评分过程。如果我们首先要实现传统数据库的查询功能的话,那么用filter模式就足够了。filter模式同样可以利用搜索引擎的分词功能产生高质量的查询结果,而且filter是可以进缓存的,执行起来效率更高。这些功能数据库管理系统是无法达到的。ES的filter模式是在bool查询框架下实现的,如下:
- GET /_search
- {
- "query": {
- "bool": {
- "filter": [
- { "term": { "status": "published" }},
- { "range": { "publish_date": { "gte": "2015-01-01" }}}
- ]
- }
- }
- }
下面是一个最简单的示范:
- val filterTerm = search("bank")
- .query(
- boolQuery().filter(termQuery("city.keyword","Brogan")))
产生的请求json如下:
- POST /bank/_search
- {
- "query":{
- "bool":{
- "filter":[
- {
- "term":{"city.keyword":{"value":"Brogan"}}
- }
- ]
- }
- }
- }
先说明一下这个查询请求:这是一个词条查询termQuery,要求条件完全匹配,包括大小写,肯定无法用经过分词器分析过的字段,所以用city.keyword。
返回查询结果json:
- {
- "took" : 1,
- "timed_out" : false,
- "_shards" : {
- "total" : 1,
- "successful" : 1,
- "skipped" : 0,
- "failed" : 0
- },
- "hits" : {
- "total" : {
- "value" : 1,
- "relation" : "eq"
- },
- "max_score" : 0.0,
- "hits" : [
- {
- "_index" : "bank",
- "_type" : "_doc",
- "_id" : "1",
- "_score" : 0.0,
- "_source" : {
- "account_number" : 1,
- "balance" : 39225,
- "firstname" : "Amber",
- "lastname" : "Duke",
- "age" : 32,
- "gender" : "M",
- "address" : "880 Holmes Lane",
- "employer" : "Pyrami",
- "email" : "amberduke@pyrami.com",
- "city" : "Brogan",
- "state" : "IL"
- }
- }
- ]
- }
- }
我们来看看elasitic4s是怎样表达上面json结果的:首先,返回的类型是 Reponse[SearchResponse]。Response类定义如下:
- sealed trait Response[+U] {
- def status: Int // the http status code of the response
- def body: Option[String] // the http response body if the response included one
- def headers: Map[String, String] // any http headers included in the response
- def result: U // returns the marshalled response U or throws an exception
- def error: ElasticError // returns the error or throw an exception
- def isError: Boolean // returns true if this is an error response
- final def isSuccess: Boolean = !isError // returns true if this is a success
- def map[V](f: U => V): Response[V]
- def flatMap[V](f: U => Response[V]): Response[V]
- final def fold[V](ifError: => V)(f: U => V): V = if (isError) ifError else f(result)
- final def fold[V](onError: RequestFailure => V, onSuccess: U => V): V = this match {
- case failure: RequestFailure => onError(failure)
- case RequestSuccess(_, _, _, result) => onSuccess(result)
- }
- final def foreach[V](f: U => V): Unit = if (!isError) f(result)
- final def toOption: Option[U] = if (isError) None else Some(result)
- }
Response[+U]是个高阶类,如果把U替换成SearchResponse, 那么返回的结果值可以用def result: SearchResponse来获取。status代表标准HTTP返回状态,isError,isSuccess代表执行情况,error是确切的异常消息。返回结果的头部信息在headers内。我们再看看这个SearchResponse类的定义:
- case class SearchResponse(took: Long,
- @JsonProperty("timed_out") isTimedOut: Boolean,
- @JsonProperty("terminated_early") isTerminatedEarly: Boolean,
- private val suggest: Map[String, Seq[SuggestionResult]],
- @JsonProperty("_shards") private val _shards: Shards,
- @JsonProperty("_scroll_id") scrollId: Option[String],
- @JsonProperty("aggregations") private val _aggregationsAsMap: Map[String, Any],
- hits: SearchHits) {...}
- case class SearchHits(total: Total,
- @JsonProperty("max_score") maxScore: Double,
- hits: Array[SearchHit]) {
- def size: Long = hits.length
- def isEmpty: Boolean = hits.isEmpty
- def nonEmpty: Boolean = hits.nonEmpty
- }
- case class SearchHit(@JsonProperty("_id") id: String,
- @JsonProperty("_index") index: String,
- @JsonProperty("_type") `type`: String,
- @JsonProperty("_version") version: Long,
- @JsonProperty("_seq_no") seqNo: Long,
- @JsonProperty("_primary_term") primaryTerm: Long,
- @JsonProperty("_score") score: Float,
- @JsonProperty("_parent") parent: Option[String],
- @JsonProperty("_shard") shard: Option[String],
- @JsonProperty("_node") node: Option[String],
- @JsonProperty("_routing") routing: Option[String],
- @JsonProperty("_explanation") explanation: Option[Explanation],
- @JsonProperty("sort") sort: Option[Seq[AnyRef]],
- private val _source: Map[String, AnyRef],
- fields: Map[String, AnyRef],
- @JsonProperty("highlight") private val _highlight: Option[Map[String, Seq[String]]],
- private val inner_hits: Map[String, Map[String, Any]],
- @JsonProperty("matched_queries") matchedQueries: Option[Set[String]])
- extends Hit {...}
返回结果的重要部分如 _score, _source,fields都在SearchHit里。完整的返回结果处理示范如下:
- val filterTerm = client.execute(search("bank")
- .query(
- boolQuery().filter(termQuery("city.keyword","Brogan")))).await
- if (filterTerm.isSuccess) {
- if (filterTerm.result.nonEmpty)
- filterTerm.result.hits.hits.foreach {hit => println(hit.sourceAsMap)}
- } else println(s"Error: ${filterTerm.error.reason}")
传统查询方式中前缀查询用的比较多:
- POST /bank/_search
- {
- "query":{
- "bool":{
- "filter":[
- {
- "prefix":{"city.keyword":{"value":"Bro"}}
- }
- ]
- }
- }
- }
- val filterPrifix = client.execute(search("bank")
- .query(
- boolQuery().filter(prefixQuery("city.keyword","Bro")))
- .sourceInclude("address","city","state")
- ).await
- if (filterPrifix.isSuccess) {
- if (filterPrifix.result.nonEmpty)
- filterPrifix.result.hits.hits.foreach {hit => println(hit.sourceAsMap)}
- } else println(s"Error: ${filterPrifix.error.reason}")
- ....
- Map(address -> 880 Holmes Lane, city -> Brogan, state -> IL)
- Map(address -> 810 Nostrand Avenue, city -> Brooktrails, state -> GA)
- Map(address -> 295 Whitty Lane, city -> Broadlands, state -> VT)
- Map(address -> 511 Heath Place, city -> Brookfield, state -> OK)
- Map(address -> 918 Bridge Street, city -> Brownlee, state -> HI)
- Map(address -> 806 Pierrepont Place, city -> Brownsville, state -> MI)
正则表达式查询也有:
- POST /bank/_search
- {
- "query":{
- "bool":{
- "filter":[
- {
- "regexp":{"address.keyword":{"value":".*bridge.*"}}
- }
- ]
- }
- }
- }
- val filterRegex = client.execute(search("bank")
- .query(
- boolQuery().filter(regexQuery("address.keyword",".*bridge.*")))
- .sourceInclude("address","city","state")
- ).await
- if (filterRegex.isSuccess) {
- if (filterRegex.result.nonEmpty)
- filterRegex.result.hits.hits.foreach {hit => println(hit.sourceAsMap)}
- } else println(s"Error: ${filterRegex.error.reason}")
- ....
- Map(address -> 384 Bainbridge Street, city -> Elizaville, state -> MS)
- Map(address -> 721 Cambridge Place, city -> Efland, state -> ID)
当然,ES用bool查询来实现复合式查询,我们可以把一个bool查询放进filter框架,如下:
- POST /bank/_search
- {
- "query":{
- "bool":{
- "filter":[
- {
- "regexp":{"address.keyword":{"value":".*bridge.*"}}
- },
- {
- "bool": {
- "must": [
- { "match" : {"lastname" : "lane"}}
- ]
- }
- }
- ]
- }
- }
- }
elastic4s QueryDSL 语句和返回结果如下:
- val filterBool = client.execute(search("bank")
- .query(
- boolQuery().filter(regexQuery("address.keyword",".*bridge.*"),
- boolQuery().must(matchQuery("lastname","lane"))))
- .sourceInclude("lastname","address","city","state")
- ).await
- if (filterBool.isSuccess) {
- if (filterBool.result.nonEmpty)
- filterBool.result.hits.hits.foreach {hit => println(s"score: ${hit.score}, ${hit.sourceAsMap}")}
- } else println(s"Error: ${filterBool.error.reason}")
- ...
- score: 0.0, Map(address -> 384 Bainbridge Street, city -> Elizaville, state -> MS, lastname -> Lane)
score: 0.0 ,说明filter不会进行评分。可能执行效率会有所提高吧。