一、Buffer

  Buffer是一种Node的内置类型,不需要通过require()函数额外引入。它能读取和写入二进制数据,常用于解析网络数据流、文件等。

1)创建

  通过new关键字初始化Buffer对象的方式已经被废弃,下面的代码都已经过时。

new Buffer(array)
new Buffer(arrayBuffer[, byteOffset[, length]])
new Buffer(buffer)
new Buffer(size)
new Buffer(string[, encoding])

  目前有两种方式创建Buffer对象,第一种是通过alloc()或allocUnsafe()两个静态方法,语法如下。

Buffer.alloc(size[, fill[, encoding]])
Buffer.allocUnsafe(size)

  alloc()方法可接收三个参数,后两个是可选的。第一个参数是长度,第二个参数是预填充的值,第三个参数是字符编码,默认值是“utf8”。

const buf1 = Buffer.alloc(10);
const buf2 = Buffer.alloc(10, "A");
const buf3 = Buffer.alloc(10, "A", "ascii");

  如果打印buf3,那么得到的将是一组十六进制数据,而非难以阅读的二进制数据,如下所示。

<Buffer 41 41 41 41 41 41 41 41 41 41>

  注意,Buffer的大小在创建时确定,后面也无法更改,其类型可由Buffer.isBuffer()辨别。当前Node支持的字符编码有6种:

  (1)ascii:仅适用于7位的ASCII数据。

  (2)utf8:多字节编码的Unicode字符。许多网页和其它文档格式都在使用UTF-8。

  (3)utf16le/ucs2:2或4个字节,小端序编码的Unicode字符。支持代理对(U+10000至U+10FFFF)。

  (4)base64:Base64编码,一种基于64个可打印字符来表示二进制数据的表示方法。

  (5)latin1/binary:一种可编码成单字节字符串的方法。

  (6)hex:将每个字节编码成两个十六进制的字符。

  allocUnsafe()是一个不安全的方法,因为它分配的内存片段是未初始化的,即没有被清零。虽然这种设计性能优越,但分配的内存中可能会包含旧数据。

  第二种是通过Buffer.from()方法创建Buffer对象,它的参数可以是数组、字符串、Buffer对象等,如下所示。

const buf = Buffer.from("A");
console.log(buf);        //<Buffer 41>

2)转换编码

  在读取文件时,可通过toString()方法将Buffer对象转换成字符串,如下所示,默认是UTF-8格式。

const fs = require('fs');
fs.readFile('./demo.txt', (err, buf) => {
  buf.toString();              //"你好,Node.js"
  buf.toString("base64");       //"5L2g5aW977yMTm9kZS5qcw=="
});

二、流

  Node中的stream模块用于处理流式数据,许多内置的核心模块都在其内部实现了流操作,流还适用于网络传输、JSON解析器、RFC(远程调用)等。流包括四个抽象类:

  (1)Readable:可读流,读取底层的I/O数据源。

  (2)Writeable:可写流,将数据写入到目标中。

  (3)Duplex:双工流,即可读也可写。

  (4)Transform:转换流,会修改数据的双工流。

1)pipe()

  在可读流中,包含一个管道方法:pipe(),它的作用是关联可读流与可写流,让数据通过管道从可读流进入到可写流中。pipe()方法能接收一个Writable对象,并返回对目标流的引用,从而可形成链式调用。

  在下面的示例中,会将origin.txt中的数据通过管道写入到target.txt文件中,调用文件模块的createReadStream()方法能得到一个Readable对象。

const fs = require('fs');
const readable = fs.createReadStream('./origin.txt');
const writable = fs.createWriteStream('./target.txt');
readable.pipe(writable);

2)事件

  以可读流为例,它的data事件可在接收到数据块后触发,而end事件会在流没有数据时触发。在下面的示例中,origin.txt文件包含的内容是“hello Node.js”。

const fs = require('fs');
const readable = fs.createReadStream('./origin.txt', {highWaterMark: 2});
readable.on("data", (chunk) => {
  console.log(`接收到 ${chunk.length} 个字节的数据`, chunk.toString());
});
readable.on("end", () => {
  console.log("结束接收");
});

  在调用createReadStream()方法时,包含一个highWaterMark属性,其默认值为64KB,它的作用是限制可缓冲的字节数。当定义为2后,每接收2个字节的数据,就会触发data事件,打印结果如下所示。

接收到 2 个字节的数据 he
接收到 2 个字节的数据 ll
接收到 2 个字节的数据 o
接收到 2 个字节的数据 No
接收到 2 个字节的数据 de
接收到 2 个字节的数据 .j
接收到 1 个字节的数据 s
结束接收

  可读流还包含一个error事件,用于监听异常,其事件处理程序会接收一个Error对象。在下面的示例中,会读取不存在的文件,从而触发error事件。

const readable = fs.createReadStream('./demo.txt');
readable.on("error", (err) => {
  console.log(err);        //打印错误信息
});

3)实现流

  当实现自定义的流时,需要继承四个抽象类中的一个,表1列出了四个抽象类需要实现的方法。

抽象类 需要实现的方法
Readable _read()
Writeable _write()、_writev()、_final()
Duplex _read()、_write()、_writev()、_final()
Transform _transform()、_flush()、_final()

  下面是一个自定义可写流的例子,_write()方法中的encoding是一个字符串,表示字符编码。

const { Writable } = require('stream');
class MyWritable extends Writable {
  constructor(options) {
    super(options);
  }
  _write(chunk, encoding, callback) {
    if (encoding === "buffer") {
      callback();
    }
  }
}

三、EventEmitter

  Node的事件模块目前只包含一个EventEmitter类(即事件触发器),所有能触发事件的对象都是EventEmitter类的实例。EventEmitter通常被用作基类,在Node内部,凡是提供事件机制的模块都会继承它。

  在下面的示例中,声明了一个EventEmitter实例,on()方法用于注册监听器,emit()方法用于触发事件。在调用emit()方法时,传递了自定义的type参数。

const EventEmitter = require('events');
class MyEmitter extends EventEmitter {}
const myEmitter = new MyEmitter();

myEmitter.on('click', (type) => {
  console.log(`触发${type}事件`);
});
myEmitter.emit('click', "点击");

  注意,可注册多个相同名称的事件,监听器会按照添加顺序依次调用。事件模块还提供了很多其它方法,例如off()用于解除事件绑定,once()可以只监听一次事件。

 

版权声明:本文为strick原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/strick/p/12626335.html