蒙特卡罗法

在介绍Q-learing算法之前,我们还是对蒙特卡罗法(MC)进行一些介绍。MC方法是一种无模型(model-free)的强化学习方法,目标是得到最优的行为价值函数\(q_*\)。在前面一篇博客中,我们所介绍的动态规划算法则是一种有模型的算法。那么问题来了,什么是模型(model)?模型其实就是我们在第一篇博客:DQN(Deep Q-learning)入门教程(一)之强化学习介绍种所介绍的状态转化模型: \(P_{ss’}^a\)

在动态规划解决问题的时候,我们是已知\(P_{ss’}^a\),但是实际上我们也可能对于\(P_{ss’}^a\)我们是未知的。那么怎么办呢?此时,我们使用经验平均来解决这个问题。其中的思想有点类似大数定理,尽管我不知道模型概率是什么,但是我可以使用无数次的实验来逼近这个概率。

任然是分为两个部分:

  1. 策略评估
  2. 策略控制
    • 探索性
    • 无探索性

策略评估

前面我们说了,我们使用多次实验来解决model-free,因此我们将历史实验数据称之为经验,然后进行平均求得的价值函数当成价值函数当作结果。

  • 经验:我们使用策略做很多次实验,每次实验都是从最初状态到终止状态。假如一次实验所得得到的数据如下:\(S_1,A_1,R_2,S_2,A_2,…S_t,A_t,R_{t+1},…R_T, S_T\),则在状态\(s\)处获得的回报是:\(G_{t}(s)=R_{t+1}+\gamma R_{t+2}+\cdots+\gamma^{T-1} R_{T}\)。而我们就可以进行多次实验,就可以得到多份数据。

  • 平均:平均有两种方式,第一次访问蒙特卡罗方法和每次访问蒙特卡罗方法。假如我们做实验的到的数据如下,现在需要来计算\(G(s)\):

    1. 第一次访问蒙特卡罗方法:只是使用每次实验第一次出现状态\(s\)的放回值。比如说上图中\(G_{11},G_{21}\),但是不使用\(G_{12}\)

      \[\begin{equation}v(s)=\frac{G_{11}(s)+G_{21}(s)+\cdots}{N(s)}\end{equation} \\
      N(s)代表出现的次数
      \]

    2. 每次访问蒙特卡罗方法:则就是只要出现过,就使用,比如说上图中的\(G_{11},G_{12},G_{21}\)

      \[\begin{equation}v(s)=\frac{G_{11}(s)+G_{12}(s)+\cdots+G_{21}(s)+\cdots}{N(s)}\end{equation}
      \]

不过我们可以想一想,这样计算平均值会有什么问题?浪费内存空间,因为我们需要储存该状态所有历史实验数据然后再取平均。因此我们对取平均值的方法进行改进,改进的原理如下:

\[\begin{equation}\mu_{k}=\frac{1}{k} \sum_{j=1}^{k} x_{j}=\frac{1}{k}\left(x_{k}+\sum_{j=1}^{k-1} x_{j}\right)=\frac{1}{k}\left(x_{k}+(k-1) \mu_{k-1}\right)=\mu_{k-1}+\frac{1}{k}\left(x_{k}-\mu_{k-1}\right)\end{equation}
\]

也就是说,状态价值公式可以改写为:

\[\begin{equation}\begin{array}{c}
N\left(s\right)=N\left(s\right)+1 \\
V_{k+1}\left(s\right)=V_{k}\left(S\right)+\frac{1}{N\left(S\right)}\left(G_{t}-V_{k}\left(S\right)\right)
\end{array}\end{equation}
\]

这样我们存储上一步的状态价值函数就

版权声明:本文为xiaohuiduan原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/xiaohuiduan/p/12977830.html