[组合数学] 圆排列和欧拉函数为啥有关系:都是polya定理的锅
本文是一个笨比学习组合数学的学习笔记,因为是笨比,所以写的应该算是很通俗易懂了。
首先,我们考虑这么一个问题:你有无穷多的\(p\)种颜色的珠子,现在你想要的把他们中的\(n\)个以圆形的形状等间距的黏在一个可以旋转的圆盘上,求方案数。
然后,该问题的答案是 \(\frac{1}{n}\Sigma_{d|n}\phi(\frac{n}{d})p^d\) ,之中\(\phi()\)表示欧拉函数,下面解释一下为什么会出现这样一个数论函数。
首先,我们来复习一下polya定理:设一个序列上定义了一置换群\(|G|\),则对该序列做\(p\)种颜色的染色,方案数为\(\frac{1}{|G|}\Sigma^{|G|}_{i=1}p^{c_i}\),之中,\(|G|\)表示置换群大小(元素个数),\(c_i\)表示\(G\)中第\(i\)个置换的循环节数目。
那么在上述圆排列问题中,置换群也就是旋转变换的群了,注意这里不考虑翻转变换(这也是为什么题目里说要黏在可旋转的圆盘上的原因,这样就和翻转变换无关了)。那么显然,一个有\(n\)个珠子的圆环,一共对应了\(n\)种旋转变换,分别是从转\(1\)个单位到转\(n\)个单位(也就是不转,或者说转0个单位)的\(n\)种。因此,置换群大小\(|G|=n\)。
把\(|G|=n\)代入polya的公式里,得到\(ans=\frac{1}{n}\Sigma^{n}_{i=1}p^{c_i}\),那么对比真正的答案,接下来要说明的就是,为什么\(\Sigma^{n}_{i=1}p^{c_i}=\Sigma_{d|n}\phi(\frac{n}{d})p^d\)。
答案其实简单的有些弱智:合并同类项
\(\Sigma^{n}_{i=1}p^{c_i}\)这一式子里,其实有\(n\)项,那么很自然的一个想法就是:\(p^{c_i}\)是不是有不少重复的呢?事实上,是的,甚至只有\(\sqrt{n}\)种不同的\(p^{c_i}\)。
下面随便假设有个指数\(d\),那我想知道\(\Sigma^{n}_{i=1}p^{c_i}\),有几个\(p^d\)出现,也就是有几个\(c_i=d\)。回忆一下,这里\(c_i\)指的是第\(i\)个置换循环节的数量,这个要怎么求呢?这里需要一个简单但nb的小知识:
定理:对于\(n\)个珠子组成的圆的旋转变换来说,旋转了\(x\)个单位的变换对应的循环节数量有\(gcd(n,x)\)个,特别的,\(x=0\)时的循环节数量有\(n\)个。
不是证明的证明:考虑一个青蛙跳石头的问题,也就是有\(n\)块石头圆形排列,编号从\(0~n-1\),青蛙初始在\(pos\)的位置,每次青蛙会跳x步,那么青蛙跳一步就相当于\(pos=(pos+x)%k\),现在,请问青蛙一直跳下去,能踩到多少块石头。例如,\(n=6,x=4,pos=2\)时,青蛙就只能跳到编号为\(0,2,4\)的三块儿石头上。该问题的答案是\(\frac{n}{gcd(n,x)}\),这个证明略了,这是个比较好理解但不太好表述的数论结论。
那么,如果我们把旋转\(x\)个单位的置换群理解成每步跳\(x\)格的青蛙的话,就有循环节长度 = 青蛙能跳到的石头个数 = \(\frac{n}{gcd(n,x)}\) 。又因为从青蛙的例子里可以看出,该长度和青蛙初始的\(pos\)无关,所以所有的循环节长度都是\(\frac{n}{gcd(n,x)}\)。
进而,由于 n=循环节长度*循环节数量,就可以解得循环节数量为\(gcd(n,x)\),这就是旋转\(x\)对应置换的循环节数量。
书归正传,我们现在想知道的是,给定一个整数\(d\),有几个\(p^d\)出现在\(\Sigma^{n}_{i=1}p^{c_i}\)中,或者说多少个\(c_i=d\)。\(c_i\)的含义是循环节数量,也就是对于\(x\in [1,n]\),有多少个\(x\)对应的循环节数量是\(d\)。废话不多说,按刚才的结论,这也就是问有多少个\(x\)满足\(gcd(n,x)=d\)。
有多少个\(x\)满足\(gcd(n,x)=d\):这又是个数论问题,首先,变换成\(gcd(\frac{n}{d},\frac{x}{d})=1\),这个变换是科学的,因为\(gcd(n,x)=d\)中\(n\)和\(x\)一定是\(d\)的倍数。那么,有多少个\(x\)满足\(gcd(\frac{n}{d},\frac{x}{d})=1\)呢?由于满足\(gcd(\frac{n}{d},狗)=1\)的狗有\(\phi(n/d)\)个(根据欧拉函数的定义),而狗和\(x\)显然是一一对应的,所以这样的\(x\)就也有\(\phi(n/d)\)个。
所以,\(ans=\frac{1}{n}\Sigma^{n}_{i=1}p^{c_i}=\frac{1}{n}\Sigma_{d|n}\phi(\frac{n}{d})p^d\),这里\(d|n\)是因为根据上面推导,循环节数量\(d\)显然一定是\(n\)的因子。