【皮尔逊相关系数】类似于余弦定理的使用(推荐),直接上代码
# 也是用于内容推荐 def pearson(p, q): # 只计算两者共同有的 same = 0 for i in p: if i in q: same += 1 n = same # 分别求p,q的和 sumx = sum([p[i] for i in range(n)]) sumy = sum([q[i] for i in range(n)]) # 分别求出p,q的平方和 sumxsq = sum([p[i] ** 2 for i in range(n)]) sumysq = sum([q[i] ** 2 for i in range(n)]) # 求出p,q的乘积和 sumxy = sum([p[i] * q[i] for i in range(n)]) # print sumxy # 求出pearson相关系数 up = sumxy - sumx * sumy / n down = ((sumxsq - pow(sumxsq, 2) / n) * (sumysq - pow(sumysq, 2) / n)) ** .5 # 若down为零则不能计算,return 0 if down == 0: return 0 r = up / down return r p = [0,1,1,1] q = [0,1,1,1] print (pearson(p,q))
# 得出的结果是1.0
版权声明:本文为wanghong1994原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。