【新闻】:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测、医学图像、NLP等多个学术交流分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会。微信:cyx645016617.

参考目录:

本文的代码已经上传公众号后台,回复【PyTorch】获取。

想要把一个图片,转换成RGB3通道的一个张量,我们怎么做呢?大家第一反应应该是PIL这个库

  1. from PIL import Image
  2. import numpy as np
  3. image = Image.open('./bug1.jpg')
  4. image.show()

展示的图片:

然后我们这个image现在是PIL格式的,我们使用numpy.array()来将其转换成numpy的张量的形式:

  1. image = np.array(image)
  2. print(image.shape)
  3. >>>(326, 312, 3)

可以看到,这个第三维度是3。对于pytorch而言,数据的第一维度应该是样本数量,第二维度是通道数,第三四是图像的宽高,因此PIL读入的图片,往往需要把通道数的这个维度移动到第二维度上才能对接上pytorch的形式。(transpose方法来实现这个功能,这里不细说)

下面是重点啦,对于tensorflow,tf中自己带了一个解码函数,先看一下我的文件目录:

  1. import tensorflow as tf
  2. images = tf.io.gfile.glob('./*.jpeg')
  3. print(imagestype(images))
  4. > ['.\\bug1.jpeg', '.\\bug2.jpeg'] <class 'list'>

可以看出来:

  • 这个tensorflow.io.gfile.glob()是读取路径下的所有符合条件的文件,并且把路径做成一个list返回;
  • 这个功能也可以用glob库函数实现,我记得是glob.glob()方法;
  • 这里的bug1和bug2其实是同一张图片,都是上面的那个小兔子。
  1. image = tf.io.read_file('./bug1.jpeg')
  2. image = tf.image.decode_jpeg(image,channels=3)
  3. print(image.shape,type(image))
  4. > (326, 312, 3) <class 'tensorflow.python.framework.ops.EagerTensor'>

需要注意的是:

  • tf.io.read_file()这个得到的返回值是二进制格式,所以需要下面的tf.image.decode_jpeg进行一个解码;
  • decode_jpeg的第一个参数就是读取的二进制文件,然后channels是输出的图片的通道数,3就是RPB三个通道,如果是1的话,就是灰度图片,ratio是图片大小的一个缩小比例,默认是1,可以是2和4,一会看一下ratio=2的情况;
  • 这个image的type是一个tensorflow特别的Tensor的形式,而不是pytorch的那种tensor的形式了。
  1. image = tf.io.read_file('./bug1.jpeg')
  2. image = tf.image.decode_jpeg(image,channels=1ratio=2)
  3. print(image.shape,type(image))
  4. > (163, 156, 1) <class 'tensorflow.python.framework.ops.EagerTensor'>

宽高都变成了原来的一半,然后通道数是1,都和预想的一样。使用decode_jpeg等解码函数得到的结果,是uint8的类型的,简单地说就是整数,0到255范围的。在对图片进行操作的时候,我们需要将其标准化到0到1区间的,因此需要将其转换成float32类型的。所以对上述代码进行补充:

  1. image = tf.io.read_file('./bug1.jpeg')
  2. image = tf.image.decode_jpeg(image,channels=1,ratio=2)
  3. print(image.shape,type(image))
  4. image = tf.image.resize(image,[256,256]) # 统一图片大小
  5. image = tf.cast(image,tf.float32) # 转换类型
  6. image = image/255 # 归一化
  7. print(image)

从结果来看,数据类型已经改变:

下面是dataset更正式的写法,关于TF2的问题,不要百度!百度到的都是TF1的解答,看的我晕死了,TF的API的结构真是不太友好。。。

  1. def read_image(path):
  2. image = tf.io.read_file(path)
  3. image = tf.image.decode_jpeg(image, channels=3, ratio=1)
  4. image = tf.image.resize(image, [256, 256]) # 统一图片大小
  5. image = tf.cast(image, tf.float32) # 转换类型
  6. image = image / 255 # 归一化
  7. return image
  8. images = tf.io.gfile.glob('./*.jpeg')
  9. dataset = tf.data.Dataset.from_tensor_slices(images)
  10. AUTOTUNE = tf.data.experimental.AUTOTUNE
  11. dataset = dataset.map(read_image,num_parallel_calls=AUTOTUNE)
  12. dataset = dataset.shuffle(1).batch(1)
  13. for a in dataset.take(2):
  14. print(a.shape)

代码中需要注意的是:

  • glob获取一个文件的list,本次就两个文件名字,一个bug1.jpeg,一个bug2.jpeg;
  • tf.data.Dataset.from_tensor_slices()返回的就是一个tensorflow的dataset类型,可以简单理解为一个可迭代的list,并且有很多其他方法;
  • dataset.map就是用实现定义好的函数,对处理dataset中每一个元素,在上面代码中是把路径的字符串变成该路径读取的图片张量,对图片的预处理应该也在这部分进行吧;
  • dataset.shuffle就是乱序,.batch()就是把dataset中的元素组装batch;
  • 在获取dataset中的元素的时候,TF1中有什么迭代器的定义啊,什么iter,但是TF2不用这些,直接.take(num)就行了,这个num就是从dataset中取出来的batch的数量,也就是循环的次数吧。
  • AUTOTUNE = tf.data.experimental.AUTOTUNE 就是根据你的cpu的情况,自动判断多线程的数量。
    上面代码的输出结果为:

版权声明:本文为PythonLearner原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/PythonLearner/p/13754948.html