@

官方文档地址

Hive官网,点我就进
oracle,sqlserver都提供了窗口函数,但是在mysql5.5和5.6都没有提供窗口函数!

窗口函数: 窗口+函数

  • 窗口: 函数运行时计算的数据集的范围
  • 函数: 运行的函数!
    仅仅支持以下函数:

Windowing functions

  • LEAD (scalar_expression [,offset] [,default]): 返回当前行以下N行的指定列的列值!如果找不到,就采用默认值
  • LAG (scalar_expression [,offset] [,default]): 返回当前行以上N行的指定列的列值!如果找不到,就采用默认值
  • FIRST_VALUE(列名,[false(默认)]):返回当前窗口指定列的第一个值,第二个参数如果为true,代表加入第一个值为null,跳过空值,继续寻找!
  • LAST_VALUE(列名,[false(默认)]):返回当前窗口指定列的最后一个值,第二个参数如果为true,代表加入第一个值为null,跳过空值,继续寻找!

统计类的函数(一般都需要结合over使用):min,max,avg,sum,count

排名分析:

  • RANK
  • ROW_NUMBER
  • DENSE_RANK
  • CUME_DIST
  • PERCENT_RANK
  • NTILE

注意:不是所有的函数在运行都是可以通过改变窗口的大小,来控制计算的数据集的范围!所有的排名函数和LAG,LEAD,支持使用over(),但是在over()中不能定义 window_clause

格式: 函数 over( partition by 字段 ,order by 字段 window_clause )

窗口的大小可以通过windows_clause来指定:

(rows | range) between (unbounded | [num]) preceding and ([num] preceding | current row | (unbounded | [num]) following)
(rows | range) between current row and (current row | (unbounded | [num]) following)
(rows | range) between [num] following and (unbounded | [num]) following

特殊情况:

  • ①在over()中既没有出现windows_clause,也没有出现order by,窗口默认为rows between UNBOUNDED PRECEDING and UNBOUNDED FOLLOWING
  • ②在over()中(没有出现windows_clause),指定了order by,窗口默认为rows between UNBOUNDED PRECEDING and CURRENT ROW

窗口函数和分组有什么区别?

  • ①如果是分组操作,select后只能写分组后的字段
  • ②如果是窗口函数,窗口函数是在指定的窗口内,对每条记录都执行一次函数
  • ③如果是分组操作,有去重效果,而partition不去重!

练习

(9) 查询前20%时间的订单信息
精确算法:

 select *
 from
 (select name,orderdate,cost,cume_dist() over(order by orderdate ) cdnum
 from  business) tmp
 where cdnum<=0.2

不精确计算:

 select *
 from
 (select name,orderdate,cost,ntile(5) over(order by orderdate ) cdnum
 from  business) tmp
 where cdnum=1

(8)查询顾客的购买明细及顾客最近三次cost花费

最近三次: 当前和之前两次当前+前一次+后一次

当前和之前两次:

select name,orderdate,cost,sum(cost) over(partition by name order by orderdate rows between 2 PRECEDING and CURRENT  row) 
 from business 

当前+前一次+后一次:

select name,orderdate,cost,sum(cost) over(partition by name order by orderdate rows between 1 PRECEDING and 1  FOLLOWING) 
 from business

select name,orderdate,cost,cost+
 lag(cost,1,0) over(partition by name order by orderdate )+
 lead(cost,1,0) over(partition by name order by orderdate )
 from business

(7) 查询顾客的购买明细及顾客本月最后一次购买的时间

select name,orderdate,cost,LAST_VALUE(orderdate,true) over(partition by name,substring(orderdate,1,7) order by orderdate rows between CURRENT  row and UNBOUNDED  FOLLOWING) 
 from business 

(6) 查询顾客的购买明细及顾客本月第一次购买的时间

select name,orderdate,cost,FIRST_VALUE(orderdate,true) over(partition by name,substring(orderdate,1,7) order by orderdate ) 
 from business

(5) 查询顾客的购买明细及顾客下次的购买时间

 select name,orderdate,cost,lead(orderdate,1,'无数据') over(partition by name order by orderdate ) 
 from business

(4)查询顾客的购买明细及顾客上次的购买时间

  select name,orderdate,cost,lag(orderdate,1,'无数据') over(partition by name order by orderdate ) 
 from business

(3)查询顾客的购买明细要将cost按照日期进行累加

select name,orderdate,cost,sum(cost) over(partition by name order by orderdate ) 
 from business

(2)查询顾客的购买明细及月购买总额

 select name,orderdate,cost,sum(cost) over(partition by name,substring(orderdate,1,7) ) 
 from business

(1)查询在2017年4月份购买过的顾客及总人数

select name,count(*) over(rows between UNBOUNDED  PRECEDING and UNBOUNDED  FOLLOWING)
from business
where substring(orderdate,1,7)='2017-04'
group by name

等价于

select name,count(*) over()
from business
where substring(orderdate,1,7)='2017-04'
group by name

版权声明:本文为sunbr原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/sunbr/p/13778737.html