loj #6179. Pyh 的求和 莫比乌斯反演
题目描述
求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^m \varphi(ij)(mod\ 998244353)\)
\(T\) 组询问
\(1 \leq n,m,T \leq 10^5\)
分析
令 \(n<m\)
首先,我们把 \(\varphi(ij)\) 拆成 \(\varphi(i)\varphi(j)\frac{gcd(i,j)}{\varphi(gcd(i,j))}\)
考虑求单个欧拉函数的方法
\(\varphi(i)=i\prod\limits_{d \in prime,d|i}\frac{d-1}{d}\)
\(\varphi(i)\varphi(j)\) 比 \(\varphi(ij)\) 多乘了 \(i,j\) 共有的质因子
所以我们要把这些共有的质因子做出的贡献消除
即乘上一个 \(\frac{gcd(i,j)}{\varphi(gcd(i,j))}\)
那么式子就变成了
\(\sum\limits_{i=1}^n\sum\limits_{j=1}^m\varphi(i)\varphi(j)\frac{gcd(i,j)}{\varphi(gcd(i,j))}\)
按照莫比乌斯反演的套路,枚举 \(gcd(i,j)\)
\(\sum\limits_{d=1}^n\frac{d}{\varphi(d)}\sum\limits_{i=1}^{n/d}\sum\limits_{j=1}^{m/d}\varphi(id)\varphi(jd)[gcd(i,j)=1]\)
\(\sum\limits_{d=1}^n\frac{d}{\varphi(d)}\sum\limits_{i=1}^{n/d}\sum\limits_{j=1}^{m/d}\varphi(id)\varphi(jd)\sum\limits_{k|gcd(i,j)}\mu(k)\)
\(\sum\limits_{d=1}^n\frac{d}{\varphi(d)}\sum\limits_{k=1}^{n/d}\mu(k)\sum\limits_{i=1}^{n/dk}\sum\limits_{j=1}^{m/dk}\varphi(idk)\varphi(jdk)\)
\(\sum\limits_{T=1}^n\sum\limits_{d|T}\frac{d}{\varphi(d) }\mu(\frac{T}{d})\sum\limits_{i=1}^{n/T}\sum\limits_{j=1}^{m/T}\varphi(iT)\varphi(jT)\)
设 \(g(T)=\sum\limits_{d|T}\frac{d}{\varphi(d) }\mu(\frac{T}{d}),s(n,m)=\sum\limits_{i=1}^n\varphi(mi)\)
原式变成
\(\sum\limits_{T=1}^ng(T)s(n/T,T)s(n/T,T)\)
\(g\) 数组和 \(s\) 数组可以 \(nlogn\) 预处理出来
然后就可以 \(O(n)\) 计算每一次的答案
总复杂度就是 \(O(nT)\),还是不够优秀
我们可以人为地设一个值 \(top\)
当 \(T<\frac{m}{top}\) 时暴力计算
否则 \(\frac{n}{T},\frac{m}{T}\) 一定是小于 \(top\) 的
那么我们就可以开一个数组把小于 \(top\) 的这一部分预处理出来
然后就可以直接调用
这道题的内存限制是 \(64M\)
所以不能直接开数组
而要开一个内存池或者用 \(vector\)
代码
#include<cstdio>
#include<cmath>
#include<vector>
#define rg register
const int maxn=1e5+5,maxm=55,mod=998244353,tp=52;
inline int addmod(rg int now1,rg int now2){
return now1+=now2,now1>=mod?now1-mod:now1;
}
inline int delmod(rg int now1,rg int now2){
return now1-=now2,now1<0?now1+mod:now1;
}
inline int mulmod(rg long long now1,rg int now2){
return now1*=now2,now1>=mod?now1%mod:now1;
}
int pri[maxn],mmax,phi[maxn],mu[maxn],g[maxn],*f[maxm][maxm],buf[maxn*160],*o=buf,*s[maxn];
int ksm(rg int ds,rg int zs){
rg int nans=1;
while(zs){
if(zs&1) nans=mulmod(nans,ds);
ds=mulmod(ds,ds);
zs>>=1;
}
return nans;
}
bool not_pri[maxn];
void pre(){
not_pri[0]=not_pri[1]=1;
phi[1]=mu[1]=1;
for(rg int i=2;i<=mmax;i++){
if(!not_pri[i]){
pri[++pri[0]]=i;
phi[i]=i-1;
mu[i]=mod-1;
}
for(rg int j=1;j<=pri[0] && 1LL*i*pri[j]<=mmax;j++){
not_pri[i*pri[j]]=1;
if(i%pri[j]==0){
phi[i*pri[j]]=mulmod(pri[j],phi[i]);
break;
} else {
phi[i*pri[j]]=mulmod(phi[pri[j]],phi[i]);
mu[i*pri[j]]=mulmod(mu[pri[j]],mu[i]);
}
}
}
rg int cs;
for(rg int i=1;i<=mmax;i++){
cs=mulmod(i,ksm(phi[i],mod-2));
for(rg int j=i,now=1;j<=mmax;j+=i,now++){
g[j]=addmod(g[j],mulmod(cs,mu[now]));
}
}
for(rg int i=1;i<=mmax;i++){
cs=mmax/i;
s[i]=o;
o+=(cs+1);
for(rg int j=1;j<=cs;j++){
s[i][j]=addmod(s[i][j-1],phi[i*j]);
}
}
for(rg int i=1;i<=tp;i++){
for(rg int j=1;j<=tp;j++){
f[i][j]=o;
f[i][j][0]=0;
cs=std::min(mmax/i,mmax/j);
o+=(cs+1);
for(rg int k=1;k<=cs;k++){
f[i][j][k]=(addmod(f[i][j][k-1],mulmod(g[k],mulmod(s[k][i],s[k][j]))));
}
}
}
}
int t,n,m;
int main(){
mmax=1e5;
pre();
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
if(n>m) std::swap(n,m);
rg int nans=0,mmax=m/tp,orz1,orz2;
for(rg int i=1;i<=mmax;i++){
nans=addmod(nans,mulmod(g[i],mulmod(s[i][n/i],s[i][m/i])));
}
for(rg int l=mmax+1,r;l<=n;l=r+1){
r=std::min((n/(n/l)),m/(m/l)),orz1=n/l,orz2=m/l;
nans=addmod(nans,delmod(f[orz1][orz2][r],f[orz1][orz2][l-1]));
}
printf("%d\n",nans);
}
return 0;
}