Transformer Model

性质:

1. Transformer是Seq2Seq类模型.
2. ransformer不是RNN.
3.仅依赖attention和全连接层.
准确率远高于RNN类.

各种weights:

  1. \(weights \space\space \alpha_{ij} = align(h_i, s_j)\).
  2. Compute\(k_{:i} = W_K h_i\)and\(q_{:j} = W_Q S_j\).
  3. Compute weights\(\alpha_{:j} = Softmax(K^T q_{:j}) \in \mathbb{R}^m\).
  4. Context vector:\(c_j = \sum\limits_{i=1}^{m}{\alpha_{ij}v_{:m}}\).
  • Query:\(q_{:j} = W_Q s_j\)— 匹配别人.
  • Key:\(k_{:i} = W_K h_i\)— 等待被匹配.
  • Value:\(V_{:i} = W_V h_i\)— 待加权平均.
  • \(W_Q, W_K, W_V\)皆为待学习参数.

\(Q-K-V\)的关系其实就是:\(h(P)与s(P)求对于h(P)的 attention\), 三个(P)处都是不同的可学习的W.

Attention Layer

Key:\(k_{:i} = W_K x_i\).

Value:\(v_{:i} = W_V x_i\).

  • Queries are based on decoder’s inputs\(x_1^\prime, x_2^\prime, …, x_t^\prime\).
  • Query:\(q_{:j} = W_Q x_j^\prime\).

符号汇总:

  • Attention layer:\(C = Attn(X, X^\prime)\).
    • Encoder’s inputs:\(X = [x_1, x_2, …, x_m]\).
    • Decoder’s inputs:\(X^\prime = [x_1^\prime, x_2^\prime, …, x_t^\prime]\).
    • parameters:\(W_Q, W_K, W_V\).

  • Self-attention layer:\(C = Attn(X, X)\).
    • RNN’s inputs\(X = [x_1, x_2, …, x_m]\).
    • Parameters:\(W_Q, W_K, W_V\).

Summary:

  • Attention 最初用于Seq2Seq的RNN模型.
  • self-attention: 可用于所有RNN模型而不仅是Seq2Seq模型.
  • Attention 可以不依赖于RNN使用.

Transformer 架构:

Single-head self-attention

Multi-head self-attention:

  • l 个不共享权重的single-head self-attentions.
  • 将所有single-head self-attentions的结果concat起来
    • 假设single-head self-attention的输出为dxm的矩阵, 则对应multi-head 的输出shape为(ld)xm.

Transformer’s Encoder:

  • Transformer’s encoder = 6 stacked blocks.
  • 1 encoder block $\approx$1 multi-head attention layer + 1 dense layer.

Transformer’s Decoder:

  • Transformer’s decoder = 6 stacked blocks.
  • 1 decoder block\(\approx\)multi-head self-attention + multi-head attention + dense layer
  • Input shape: (512 x m, 512 x t), output shape: 512 x t.

Stacked Attention

BERT

  • BERT 是为了预训练Transformer 的 encoder.
  • 预测mask掉的单词: 随即遮挡15%的单词:

  • 预测下一个句子: 50%随机抽样句子或50%下一句, 给予false/true:

版权声明:本文为ZhengPeng7原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/ZhengPeng7/p/14409312.html