Pytorch系列:(七)模型初始化
为什么要进行初始化
首先假设有一个两层全连接网络,第一层的第一个节点值为 \(H_{11}= \sum_{i=0}^n X_i*W_{1i}\),
这个时候,方差为 \(D(H_{11}) = \sum_{i=0}^n D(X_i) * D(W_{1i})\), 这个时候,输入\(X_i\)一般会做归一化,那么其方差为1,而权重W如果不进行归一化的话,H的方差就会变得很大,然后多层累计,下一次的输入会越来越大,使得网络不好收敛,如果权重W进行了初始化,使得其方差保持在1/n附近,那么方差H则会收敛在1附近,从而使得网络变得更好优化。 很多初始化都是使用的这个原理,控制每一层的输出,使其保持在一定的范围内。
一些常见初始化方法
Xavier
Xavier初始化也是类似的原理, 假设输入X 以及做了归一化,其方差为1 ,那么Xavier所希望的就是上述公式D(H) 保持在1左右,那么就可以得到公式
\]
其中n1 和 n2 为网络层的输入输出节点数量,一般情况下,输入输出是不一样的,为了均衡考虑,可以做一个平均操作,于是变得到 \(D(W) = \frac{2}{n_1+n_2}\)
这个时候,我们假设 W服从均匀分布 \(U[-a, a]\), 那么在这个条件下,
\]
推出\(a = \frac{\sqrt{6}}{\sqrt{n_1+n_2+1}}\),从而得到:
\]
这样就可以得到Xavier初始化,在pytorch中使用Xavier初始化方式如下,值得注意的是,Xavier对于sigmoid和tanh比较好,对于其他的可能效果就不是那么好了
nn.init.xavier_uniform_(m.weight.data)
Kaiming
Kaiming 初始化比较适合ReLU激活函数,其原理也跟上述差不多,也是希望将权重的方差保持在一定的范围内,使得正反向传播的值得到有效的控制,在kaiming初始化中,主要将权重的方差设置为 \(D(w) = \frac{2}{ni}\),由于考虑到ReLU激活函数,将方差调整为\(D(w)= \frac{2}{(1+a^2)*n_i}\), 这里的a是ReLU的斜率。
在pytorch中使用Kaiming初始化
nn.init.kaiming_normal_(m.weight.data)
LSTM初始化
LSTM中,公式和参数值的设定如下所示
在LSTM中,由于很多门控的权重尺寸是一样的,所以可以使用如下方法进行初始化
def _init_lstm(self, weight):
for w in weight.chunk(4, 0):
init.xavier_uniform(w)
self._init_lstm(self.lstm.weight_ih_l0)
self._init_lstm(self.lstm.weight_hh_l0)
self.lstm.bias_ih_l0.data.zero_()
self.lstm.bias_hh_l0.data.zero_()
Embedding进行初始化
self.embedding = nn.Embedding(embedding_tokens, embedding_features, padding_idx=0)
init.xavier_uniform(self.embedding.weight)
其他通用初始化方法
遍历初始化
for name, param in net.named_parameters():
if 'weight' in name:
init.normal_(param, mean=0, std=0.01)
print(name, param.data)
for name, param in net.named_parameters():
if 'bias' in name:
init.constant_(param, val=0)
print(name, param.data)
## 通过instance 初始化
for m in self.children():
if isinstance(m, nn.Linear):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, -100)
# 也可以判断是否为conv2d,使用相应的初始化方式
elif isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight.item(), 1)
nn.init.constant_(m.bias.item(), 0)
直接使用pytorch内置初始化
from torch.nn import init
init.normal_(net[0].weight, mean=0, std=0.01)
init.constant_(net[0].bias, val=0)
自带初始化方法中,会自动消除梯度反向传播,但是手动情况下必须自己设定
def no_grad_uniform(tensor, a, b):
with torch.no_grad():
return tensor.uniform_(a, b)
使用apply进行初始化
批量初始化方法,注意net里面的apply函数,可以作用网络的所有module
def weights_init(m): # 1
classname = m.__class__.__name__ # 2
if classname.find('Conv') != -1: # 3
nn.init.kaiming_normal_(m.weight.data) # 4
elif classname.find('BatchNorm') != -1: # 5
nn.init.normal_(m.weight.data, 1.0, 0.02) # 6
nn.init.constant_(m.bias.data, 0) # 7
net.apply(weights_init)