上一篇博客中我们使用了四元数法计算点集配准。

本篇我们使用SVD计算点集配准。

下面是《视觉slam十四讲》中的计算方法:

计算步骤如下:

我们看到,只要求出了两组点之间的旋转,平移是非常容易得到的,所以我们重点关注R的计算。展开关于R的误差项,得:

注意到第一项和R无关,第二项由于R\’R=I,亦与R无关。因此,实际上优化目标函数变为:

接下来,我们介绍怎样通过SVD解出上述问题中最优的R,但关于最优性的证明较为复杂,感兴趣的读者请参考【50,51】,为了解R,先定义矩阵:

W是一个3*3的矩阵,对W进行SVD分解,得:

其中,为奇异值组成的对角矩阵,对角线元素从大到小排列,而U和V为正交矩阵,当W满秩时,R为:

解得R后,按式7.53求解t即可。

具体证明可以参考:

代码如下:

clear all;
close all;
clc;

%生成原始点集
X=[];Y=[];Z=[];
for i=-180:2:180
    for j=-90:2:90
        x = i * pi / 180.0;
        y = j * pi / 180.0;   
        X =[X,cos(y) * cos(x)];
        Y =[Y,sin(y) * cos(x)];
        Z =[Z,sin(x)]; 
    end
end
P=[X(1:3000)\' Y(1:3000)\' Z(1:3000)\'];

%生成变换后点集
i=0.5;j=0.3;k=0.7;
Rx=[1 0 0;0 cos(i) -sin(i); 0 sin(i) cos(i)];
Ry=[cos(j) 0 sin(j);0 1 0;-sin(j) 0 cos(j)];
Rz=[cos(k) -sin(k) 0;sin(k) cos(k) 0;0 0 1];
R=Rx*Ry*Rz;
X=P*R + [0.2,0.3,0.4];

plot3(P(:,1),P(:,2),P(:,3),\'b.\');
hold on;
plot3(X(:,1),X(:,2),X(:,3),\'r.\');

%计算点集均值
up = mean(P);
ux = mean(X);

P1=P-up;
X1=X-ux;

%计算点集协方差
sigma=P1\'*X1/(length(X1));

[u s v] = svd(sigma);
RR=u*v\';

%计算平移向量
qr=ux-up*RR;

%验证旋转矩阵与平移向量正确性
Pre = P*RR+qr;

figure;
plot3(P(:,1),P(:,2),P(:,3),\'b.\');
hold on;
plot3(X(:,1),X(:,2),X(:,3),\'r.\');
plot3(Pre(:,1),Pre(:,2),Pre(:,3),\'go\');

处理效果和四元数法一致:

原始点集:

其中蓝点为原始点集,红点为旋转平移后的点集。

配准后点集:

计算得到的旋转平移矩阵,通过对蓝点集进行转换得到绿点集,比较红点集与绿点集是否基本一致。

版权声明:本文为tiandsp原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/tiandsp/p/10276994.html