Web负载均衡实现方式(转)
Reference
[1] https://www.cnblogs.com/eric-qin/p/7238278.html
[2] https://zhuanlan.zhihu.com/p/38291558
[3] https://www.cnblogs.com/jsjwk/p/9597748.html
负载均衡(Load Balance)是集群技术(Cluster)的一种应用。负载均衡可以将工作任务分摊到多个处理单元,从而提高并发处理能力。目前最常见的负载均衡应用是Web负载均衡。根据实现的原理不同,常见的web负载均衡技术包括:DNS轮询、IP负载均衡和CDN。其中IP负载均衡可以使用硬件设备或软件方式来实现。
什么是web负载均衡
服务器集群(Cluster)使得多个服务器节点能够协同工作,根据目的的不同,服务器集群可以分为:
- 高性能集群:将单个重负载的请求分散到多个节点进行处理,最后再将处理结果进行汇总
- 高可用集群:提高冗余单元,避免单点故障
- 负载均衡集群:将大量的并发请求分担到多个处理节点。由于单个处理节点的故障不影响整个服务,负载均衡集群同时也实现了高可用性。
一般提到的负载均衡(Load Balance),是指实现负载均衡集群。负载均衡实现了横向扩展(Scale Out),避免纵向的升级(Scale Up)换代。
本文中的web负载均衡,特指能够分担web请求(http,https等)的负载均衡技术。
基本原理
任何的负载均衡技术都要想办法建立某种一对多的映射机制:一个请求的入口映射到多个处理请求的节点,从而实现分而治之(Divide and Conquer)。
这种映射机制使得多个物理存在对外体现为一个虚拟的整体,对服务的请求者屏蔽了内部的结构。
采用不同的机制建立映射关系,可以形成不同的负载均衡技术,常见的包括:
- DNS轮询
- CDN
- IP负载均衡
DNS
DNS轮询是最简单的负载均衡方式。以域名作为访问入口,通过配置多条DNS A记录使得请求可以分配到不同的服务器。
DNS轮询没有快速的健康检查机制,而且只支持WRR的调度策略导致负载很难“均衡”,通常用于要求不高的场景。并且DNS轮询方式直接将服务器的真实地址暴露给用户,不利于服务器安全。
CDN
CDN(Content Delivery Network,内容分发网络)。通过发布机制将内容同步到大量的缓存节点,并在DNS服务器上进行扩展,找到里用户最近的缓存节点作为服务提供节点。
因为很难自建大量的缓存节点,所以通常使用CDN运营商的服务。目前国内的服务商很少,而且按流量计费,价格也比较昂贵。
IP负载均衡
IP负载均衡是基于特定的TCP/IP技术实现的负载均衡。比如NAT、DR、Turning等。是最经常使用的方式。关于其原理,可以参考下面另一篇文章:lvs中的负载均衡方式。
IP负载均衡可以使用硬件设备,也可以使用软件实现。硬件设备的主要产品是F5-BIG-IP-GTM(简称F5),软件产品主要有LVS、HAProxy、NginX。其中LVS、HAProxy可以工作在4-7层,NginX工作在7层。关于三者的简单对比,可以参考这里。
硬件负载均衡设备可以将核心部分做成芯片,性能和稳定性更好,而且商用产品的可管理性、文档和服务都比较好。唯一的问题就是价格。
软件负载均衡通常是开源软件。自由度较高,但学习成本和管理成本会比较大。
F5
F5的全称是F5-BIG-IP-GTM,是最流行的硬件负载均衡设备,其并发能力达到百万级。F5的主要特性包括:
-
多链路的负载均衡和冗余
可以接入多条ISP链路,在链路之间实现负载均衡和高可用。
-
防火墙负载均衡
F5具有异构防火墙的负载均衡与故障自动排除能力。
-
服务器负载均衡
这是F5最主要的功能,F5可以配置针对所有的对外提供服务的服务器配置Virtual Server实现负载均衡、健康检查、回话保持等。
-
高可用
F5设备自身的冗余设计能够保证99.999%的正常运行时间,双机F5的故障切换时间为毫秒级。
使用F5可以配置整个集群的链路冗余和服务器冗余,提高可靠的健康检查机制,以保证高可用。
-
安全性
与防火墙类似,F5采用缺省拒绝策略,可以为任何站点增加额外的安全保护,防御普通网络攻击,包括DDoS、IP欺骗、SYN攻击、teartop和land攻击、ICMP攻击等。
-
易于管理
F5提供HTTPS、SSH、Telnet、SNMP等多种管理方式,包含详尽的实时报告和历史纪录报告。同时还提供二次开发包(i-Control)。
-
其他
F5还提供了SSL加速、软件升级、IP地址过滤、带宽控制等辅助功能。
LVS
LVS(Linux Virtual Server, linux虚拟服务器),是章文嵩博士开发的开放软件,目前已经集成到Linux内核中。
基于不同的网络技术,LVS支持多种负载均衡机制。包括:VS/NAT(基于网络地址转换技术)、VS/TUN(基于IP隧道技术)和VS/DR(基于直接路由技术)。
此外,为了适应不同的需要,淘宝开发了VS/FULLNAT,从本质上来说也是基于网络地址转换技术。最近还有一个基于VS/FULLNAT的DNAT模块。
不管使用哪种机制,LVS都不直接处理请求,而是将请求转发到后面真正的服务器(Real Server)。不同的机制,决定了响应包如何返回到客户端。
VS/NAT
NAT(Network Address Translation,网络地址转换)也叫做网络掩蔽或者IP掩蔽,是将IP 数据包头中的IP 地址转换为另一个IP 地址的过程。
NAT能够将私有(保留)地址转化为合法IP地址,通常用于一个公共IP地址和多个内部私有IP地址直接的映射,广泛应用于各种类型Internet接入方式和各种类型的网络中。
通过使用NAT将目的地址转换到多个服务器的方式,可以实现负载均衡,同时能够隐藏并保护内部服务器,避免来自网络外部的攻击。商用负载均衡设备如Cisco的LocalDirector、F5的Big/IP和Alteon的ACEDirector都是基于NAT方法。
VS/NAT(Virtual Server via Network Address Translation)是基于NAT技术实现负载均衡的方法。其架构如下图所示:
- 客户通过Virtual IP Address(虚拟服务的IP地址)访问网络服务时,请求报文到达调度器
-
调度器根据连接调度算法从一组真实服务器中选出一台服务器,将报文的目标地址Virtual IP Address改写成选定服务器的地址,报文的目标端口改写成选定服务器的相应端口,最后将修改后的报文发送给选出的服务器。
-
真实的服务器处理请求,并将响应报文发到调度器。
- 调度器将报文的源地址和源端口改为Virtual IP Address和相应的端口
- 调度器将修改过的报文发给用户
在VS/NAT的集群系统中,请求和响应的数据报文都需要通过负载调度器,当真实服务器的数目在10台和20台之间时,负载调度器将成为整个集群系统的新瓶颈。大多数Internet服务都有这样的特点:请求报文较短而响应报文往往包含大量的数据。如果能将请求和响应分开处理,即在负载调度器中只负责调度请求而响应直接返回给客户,将极大地提高整个集群系统的吞吐量。比如IP隧道技术。
VS/TUN
IP Tunneling(IP隧道)技术,又称为IP封装技术(IP encapsulation),是一种在网络之间传递数据的方式。可以将一个IP报文封装到另一个IP报文(可能是不同的协议)中,并转发到另一个IP地址。IP隧道主要用于移动主机和虚拟私有网络(Virtual Private Network),在其中隧道都是静态建立的,隧道一端有一个IP地址,另一端也有唯一的IP地址。
VS/TUN(Virtual Server via IP Tunneling)是基于隧道技术实现负载均衡的方法。其架构如下图所示:
VS/TUN与VS/NAT的工作机制大体上相同,区别在于:
-
调度器转发报文的时候进行了协议的二次封装,真实的服务器接收到请求后先进行解包。过程如下图所示:
-
响应报文从后端服务器直接返回给客户,不需要经过调度器。
VS/DR
DR(Direct Routing, 直接路由), 路由器学习路由的方法之一。路由器对于自己的网络接口所直连的网络之间的通信,可以自动维护路由表,而且不需要进行路由计算。
直接路由通常用在一个三层交换机连接几个VLAN的情况,只要设置直接路由VLAN之间就可以通信,不需要设置其他的路由方式。
VS/DR(Virtual Server via Direct Routing)是基于直接路由实现负载均衡的方法。其架构如下图所示:
跟VS/TUN方法相同,VS/DR利用大多数Internet服务的非对称特点,负载调度器中只负责调度请求,而服务器直接将响应返回给客户,可以极大地提高整个集群系统的吞吐量。
VS/DR要求调度器和服务器组都必须在物理上有一个网卡通过不分段的局域网相连,即通过交换机或者高速的HUB相连,中间没有隔有路由器。VIP地址为调度器和服务器组共享,调度器配置的VIP地址是对外可见的,用于接收虚拟服务的请求报文;所有的服务器把VIP地址配置在各自的Non-ARP网络设备上,它对外面是不可见的,只是用于处理目标地址为VIP的网络请求。
VS/DR的整个过程与VS/TUN非常类似,不同之处在于调度器不对请求包进行二次封装,只是将目标MAC地址更改为经过调度算法选出的目标服务器的MAC地址。如下图:
三种方法的优缺点比较
VS/NAT
-
优点
- 对后端服务器的操作系统无要求
- 只需要一个IP地址配置在调度器上,服务器组可以用私有的IP地址。
- 支持端口映射
-
缺点
- 请求和响应报文都需要通过调度器,伸缩能力有限(10+)
- 要求服务器和调度器在同一个VLAN
- 需要将服务器的默认网关指向调度器
- 对于那些将IP地址或者端口号在报文数据中传送的网络服务,需要编写相应的应用模块来转换报文数据中的IP地址或者端口号
VS/TUN
-
优点
- 不需要调度应答报文,性能高
- 服务器和调度器可以不在同一个VLAN
- 支持广域负载均衡
-
缺点
- 所有的服务器必须支持“IP Tunneling”协议,要安装内核模块(比如IPIP等),配置复杂
- 有建立IP隧道的开销
- 服务器上直接绑定虚拟IP(Virtaul IP),风险很大
- 服务器需要联通外网
- 不支持端口映射
VS/DR
-
优点
- 与VS/TUN相比,没有IP隧道的开销,性能最好
-
缺点
- 要求调度器与服务器都有一块网卡连在同一物理网段(同一个VLAN)上
- 要求服务器网络设备(或者设备别名)不作ARP响应,或者能将报文重定向(Redirect)到本地的Socket端口上
- 服务器上直接绑定虚拟IP(Virtaul IP),风险很大
- 不支持端口映射
VS/FULLNAT
如上节所述,前面三种传统的负载均衡机制各自存在一些不足。
VS/FULLNAT是为了解决这些不足而新开发的一种转发模式。VS/FULLNAT的特点是:
- 调度器和服务器可以跨VLAN通信,不需要配置在同一个网段
- 请求和应答报文都经过调度器,服务器不需要绑定虚拟IP
VS/FULLNAT这两个特点可以简化网络拓扑,降低运维成本和风险。
如何选择
- 如果人少钱多,不在乎性能的损耗愿意多买服务器,同时希望最大程度较少运维的工作量,可以选择FULLNAT
- 很大众的方式是用DR,没有太多的优点但也没有太多的缺点
- 如果要搞广域网负载均衡,那就用TUN吧
- 个人感觉NAT不是为了互联网用的。小并发的实验性应用或者用在非web场合,比如mysql集群等。当然,如果需要端口映射,必须使用NAT方式
1,什么是负载均衡?
当一台服务器的性能达到极限时,我们可以使用服务器集群来提高网站的整体性能。那么,在服务器集群中,需要有一台服务器充当调度者的角色,用户的所有请求都会首先由它接收,调度者再根据每台服务器的负载情况将请求分配给某一台后端服务器去处理。
那么在这个过程中,调度者如何合理分配任务,保证所有后端服务器都将性能充分发挥,从而保持服务器集群的整体性能最优,这就是负载均衡问题。
下面详细介绍负载均衡的四种实现方式。
(一)HTTP重定向实现负载均衡
过程描述
当用户向服务器发起请求时,请求首先被集群调度者截获;调度者根据某种分配策略,选择一台服务器,并将选中的服务器的IP地址封装在HTTP响应消息头部的Location字段中,并将响应消息的状态码设为302,最后将这个响应消息返回给浏览器。
当浏览器收到响应消息后,解析Location字段,并向该URL发起请求,然后指定的服务器处理该用户的请求,最后将结果返回给用户。
在使用HTTP重定向来实现服务器集群负载均衡的过程中,需要一台服务器作为请求调度者。用户的一项操作需要发起两次HTTP请求,一次向调度服务器发送请求,获取后端服务器的IP,第二次向后端服务器发送请求,获取处理结果。
调度策略
调度服务器收到用户的请求后,究竟选择哪台后端服务器处理请求,这由调度服务器所使用的调度策略决定。
- 随机分配策略
当调度服务器收到用户请求后,可以随机决定使用哪台后端服务器,然后将该服务器的IP封装在HTTP响应消息的Location属性中,返回给浏览器即可。 - 轮询策略(RR)
调度服务器需要维护一个值,用于记录上次分配的后端服务器的IP。那么当新的请求到来时,调度者将请求依次分配给下一台服务器。
由于轮询策略需要调度者维护一个值用于记录上次分配的服务器IP,因此需要额外的开销;此外,由于这个值属于互斥资源,那么当多个请求同时到来时,为了避免线程的安全问题,因此需要锁定互斥资源,从而降低了性能。而随机分配策略不需要维护额外的值,也就不存在线程安全问题,因此性能比轮询要高。
优缺点分析
采用HTTP重定向来实现服务器集群的负载均衡实现起来较为容易,逻辑比较简单,但缺点也较为明显。
在HTTP重定向方法中,调度服务器只在客户端第一次向网站发起请求的时候起作用。当调度服务器向浏览器返回响应信息后,客户端此后的操作都基于新的URL进行的(也就是后端服务器),此后浏览器就不会与调度服务器产生关系,进而会产生如下几个问题:
- 由于不同用户的访问时间、访问页面深度有所不同,从而每个用户对各自的后端服务器所造成的压力也不同。而调度服务器在调度时,无法知道当前用户将会对服务器造成多大的压力,因此这种方式无法实现真正意义上的负载均衡,只不过是把请求次数平均分配给每台服务器罢了。
- 若分配给该用户的后端服务器出现故障,并且如果页面被浏览器缓存,那么当用户再次访问网站时,请求都会发给出现故障的服务器,从而导致访问失败。
(二)DNS负载均衡
DNS是什么?
在了解DNS负载均衡之前,我们首先需要了解DNS域名解析的过程。
我们知道,数据包采用IP地址在网络中传播,而为了方便用户记忆,我们使用域名来访问网站。那么,我们通过域名访问网站之前,首先需要将域名解析成IP地址,这个工作是由DNS完成的。也就是域名服务器。
我们提交的请求不会直接发送给想要访问的网站,而是首先发给域名服务器,它会帮我们把域名解析成IP地址并返回给我们。我们收到IP之后才会向该IP发起请求。
那么,DNS服务器有一个天然的优势,如果一个域名指向了多个IP地址,那么每次进行域名解析时,DNS只要选一个IP返回给用户,就能够实现服务器集群的负载均衡。
具体做法
首先需要将我们的域名指向多个后端服务器(将一个域名解析到多个IP上),再设置一下调度策略,那么我们的准备工作就完成了,接下来的负载均衡就完全由DNS服务器来实现。
当用户向我们的域名发起请求时,DNS服务器会自动地根据我们事先设定好的调度策略选一个合适的IP返回给用户,用户再向该IP发起请求。
调度策略
一般DNS提供商会提供一些调度策略供我们选择,如随机分配、轮询、根据请求者的地域分配离他最近的服务器。
优缺点分析
DNS负载均衡最大的优点就是配置简单。服务器集群的调度工作完全由DNS服务器承担,那么我们就可以把精力放在后端服务器上,保证他们的稳定性与吞吐量。而且完全不用担心DNS服务器的性能,即便是使用了轮询策略,它的吞吐率依然卓越。
此外,DNS负载均衡具有较强了扩展性,你完全可以为一个域名解析较多的IP,而且不用担心性能问题。
但是,由于把集群调度权交给了DNS服务器,从而我们没办法随心所欲地控制调度者,没办法定制调度策略。
DNS服务器也没办法了解每台服务器的负载情况,因此没办法实现真正意义上的负载均衡。它和HTTP重定向一样,只不过把所有请求平均分配给后端服务器罢了。
此外,当我们发现某一台后端服务器发生故障时,即使我们立即将该服务器从域名解析中去除,但由于DNS服务器会有缓存,该IP仍然会在DNS中保留一段时间,那么就会导致一部分用户无法正常访问网站。这是一个致命的问题!好在这个问题可以用动态DNS来解决。
动态DNS
动态DNS能够让我们通过程序动态修改DNS服务器中的域名解析。从而当我们的监控程序发现某台服务器挂了之后,能立即通知DNS将其删掉。
综上所述
DNS负载均衡是一种粗犷的负载均衡方法,这里只做介绍,不推荐使用。
(三)反向代理负载均衡
什么是反向代理负载均衡?
反向代理服务器是一个位于实际服务器之前的服务器,所有向我们网站发来的请求都首先要经过反向代理服务器,服务器根据用户的请求要么直接将结果返回给用户,要么将请求交给后端服务器处理,再返回给用户。
之前我们介绍了用反向代理服务器实现静态页面和常用的动态页面的缓存。接下来我们介绍反向代理服务器更常用的功能——实现负载均衡。
我们知道,所有发送给我们网站的请求都首先经过反向代理服务器。那么,反向代理服务器就可以充当服务器集群的调度者,它可以根据当前后端服务器的负载情况,将请求转发给一台合适的服务器,并将处理结果返回给用户。
优点
- 隐藏后端服务器。
与HTTP重定向相比,反向代理能够隐藏后端服务器,所有浏览器都不会与后端服务器直接交互,从而能够确保调度者的控制权,提升集群的整体性能。 - 故障转移
与DNS负载均衡相比,反向代理能够更快速地移除故障结点。当监控程序发现某一后端服务器出现故障时,能够及时通知反向代理服务器,并立即将其删除。 - 合理分配任务
HTTP重定向和DNS负载均衡都无法实现真正意义上的负载均衡,也就是调度服务器无法根据后端服务器的实际负载情况分配任务。但反向代理服务器支持手动设定每台后端服务器的权重。我们可以根据服务器的配置设置不同的权重,权重的不同会导致被调度者选中的概率的不同。
缺点
- 调度者压力过大
由于所有的请求都先由反向代理服务器处理,那么当请求量超过调度服务器的最大负载时,调度服务器的吞吐率降低会直接降低集群的整体性能。 - 制约扩展
当后端服务器也无法满足巨大的吞吐量时,就需要增加后端服务器的数量,可没办法无限量地增加,因为会受到调度服务器的最大吞吐量的制约。
粘滞会话
反向代理服务器会引起一个问题。若某台后端服务器处理了用户的请求,并保存了该用户的session或存储了缓存,那么当该用户再次发送请求时,无法保证该请求仍然由保存了其Session或缓存的服务器处理,若由其他服务器处理,先前的Session或缓存就找不到了。
解决办法1:
可以修改反向代理服务器的任务分配策略,以用户IP作为标识较为合适。相同的用户IP会交由同一台后端服务器处理,从而就避免了粘滞会话的问题。
解决办法2:
可以在Cookie中标注请求的服务器ID,当再次提交请求时,调度者将该请求分配给Cookie中标注的服务器处理即可。
2,负载均衡组件
1.1、apache
—— 它是Apache软件基金会的一个开放源代码的跨平台的网页服务器,属于老牌的web服务器了,支持基于Ip或者域名的虚拟主机,支持代理服务器,支持安全Socket层(SSL)等等,目前互联网主要使用它做静态资源服务器,也可以做代理服务器转发请求(如:图片链等),结合tomcat等servlet容器处理jsp。
1.2、ngnix
—— 俄罗斯人开发的一个高性能的 HTTP和反向代理服务器。由于Nginx 超越 Apache 的高性能和稳定性,使得国内使用 Nginx 作为 Web 服务器的网站也越来越多,其中包括新浪博客、新浪播客、网易新闻、腾讯网、搜狐博客等门户网站频道等,在3w以上的高并发环境下,ngnix处理能力相当于apache的10倍。
参考:apache和tomcat的性能分析和对比(http://blog.s135.com/nginx_php_v6/)
1.3、lvs
—— Linux Virtual Server的简写,意即Linux虚拟服务器,是一个虚拟的服务器集群系统。由毕业于国防科技大学的章文嵩博士于1998年5月创立,可以实现LINUX平台下的简单负载均衡。了解更多,访问官网:http://zh.linuxvirtualserver.org/。
1.4、HAProxy
—— HAProxy提供高可用性、负载均衡以及基于TCP和HTTP应用的代理,支持虚拟主机,它是免费、快速并且可靠的一种解决方案。HAProxy特别适用于那些负载特大的web站点, 这些站点通常又需要会话保持或七层处理。HAProxy运行在当前的硬件上,完全可以支持数以万计的并发连接。并且它的运行模式使得它可以很简单安全的整合进您当前的架构中, 同时可以保护你的web服务器不被暴露到网络上.
1.5、keepalived
—— 这里说的keepalived不是apache或者tomcat等某个组件上的属性字段,它也是一个组件,可以实现web服务器的高可用(HA high availably)。它可以检测web服务器的工作状态,如果该服务器出现故障被检测到,将其剔除服务器群中,直至正常工作后,keepalive会自动检测到并加入到服务器群里面。实现主备服务器发生故障时ip瞬时无缝交接。它是LVS集群节点健康检测的一个用户空间守护进程,也是LVS的引导故障转移模块(director failover)。Keepalived守护进程可以检查LVS池的状态。如果LVS服务器池当中的某一个服务器宕机了。keepalived会通过一 个setsockopt呼叫通知内核将这个节点从LVS拓扑图中移除。
1.6、memcached
—— 它是一个高性能分布式内存对象缓存系统。当初是Danga Interactive为了LiveJournal快速发展开发的系统,用于对业务查询数据缓存,减轻数据库的负载。其守护进程(daemon)是用C写的,但是客户端支持几乎所有语言(客户端基本上有3种版本[memcache client for java;spymemcached;xMecache]),服务端和客户端通过简单的协议通信;在memcached里面缓存的数据必须序列化。
1.7、terracotta
—— 是一款由美国Terracotta公司开发的著名开源Java集群平台。它在JVM与Java应用之间实现了一个专门处理集群功能的抽象层,允许用户在不改变系统代码的情况下实现java应用的集群。支持数据的持久化、session的复制以及高可用(HA)
负载均衡技术方案
目前市面上最常见的负载均衡技术方案主要有三种:
-
基于DNS负载均衡
-
基于硬件负载均衡
-
基于软件负载均衡
三种方案各有优劣,DNS负载均衡可以实现在地域上的流量均衡,硬件负载均衡主要用于大型服务器集群中的负载需求,而软件负载均衡大多是基于机器层面的流量均衡。在实际场景中,这三种是可以组合在一起使用。下面来详细讲讲:
-
基于DNS负载均衡
(网络图片)
基于DNS来做负载均衡其实是一种最简单的实现方案,通过在DNS服务器上做一个简单配置即可。
其原理就是当用户访问域名的时候,会先向DNS服务器去解析域名对应的IP地址,这个时候我们可以让DNS服务器根据不同地理位置的用户返回不同的IP。比如南方的用户就返回我们在广州业务服务器的IP,北方的用户来访问的话,我就返回北京业务服务器所在的IP。
在这个模式下,用户就相当于实现了按照「就近原则」将请求分流了,既减轻了单个集群的负载压力,也提升了用户的访问速度。
使用DNS做负载均衡的方案,天然的优势就是配置简单,实现成本非常低,无需额外的开发和维护工作。
但是也有一个明显的缺点是:当配置修改后,生效不及时。这个是由于DNS的特性导致的,DNS一般会有多级缓存,所以当我们修改了DNS配置之后,由于缓存的原因,会导致IP变更不及时,从而影响负载均衡的效果。
另外,使用DNS做负载均衡的话,大多是基于地域或者干脆直接做IP轮询,没有更高级的路由策略,所以这也是DNS方案的局限所在。
-
基于硬件负载均衡
(网络图片)
硬件的负载均衡那就比较牛逼了,比如大名鼎鼎的 F5 Network Big-IP,也就是我们常说的 F5,它是一个网络设备,你可以简单的理解成类似于网络交换机的东西,完全通过硬件来抗压力,性能是非常的好,每秒能处理的请求数达到百万级,即 几百万/秒 的负载,当然价格也就非常非常贵了,十几万到上百万人民币都有。
因为这类设备一般用在大型互联网公司的流量入口最前端,以及政府、国企等不缺钱企业会去使用。一般的中小公司是不舍得用的。
采用 F5 这类硬件做负载均衡的话,主要就是省心省事,买一台就搞定,性能强大,一般的业务不在话下。而且在负载均衡的算法方面还支持很多灵活的策略,同时还具有一些防火墙等安全功能。但是缺点也很明显,一个字:贵。
-
基于软件负载均衡
(网络图片)
软件负载均衡是指使用软件的方式来分发和均衡流量。软件负载均衡,分为7层协议 和 4层协议。
网络协议有七层,基于第四层传输层来做流量分发的方案称为4层负载均衡,例如 LVS,而基于第七层应用层来做流量分发的称为7层负载均衡,例如 Nginx。这两种在性能和灵活性上是有些区别的。
基于4层的负载均衡性能要高一些,一般能达到 几十万/秒 的处理量,而基于7层的负载均衡处理量一般只在 几万/秒 。
基于软件的负载均衡的特点也很明显,便宜。在正常的服务器上部署即可,无需额外采购,就是投入一点技术去优化优化即可,因此这种方式是互联网公司中用得最多的一种方式。
三、常用的均衡算法有哪些?
上面讲完了常见的负载均衡技术方案,那么接下来咱们看一下,在实际方案应用中,一般可以使用哪些均衡算法?
-
轮询策略
-
负载度策略
-
响应策略
-
哈希策略
下面来分别介绍一下这几种均衡算法/策略的特点:
-
轮询策略
轮询策略其实很好理解,就是当用户请求来了之后,「负载均衡器」将请求轮流的转发到后端不同的业务服务器上。这个策略在DNS方案中用的比较多,无需关注后端服务的状态,只药有请求,就往后端轮流转发,非常的简单、实用。
在实际应用中,轮询也会有多种方式,有按顺序轮询的、有随机轮询的、还有按照权重来轮询的。前两种比较好理解,第三种按照权重来轮询,是指给每台后端服务设定一个权重值,比如性能高的服务器权重高一些,性能低的服务器给的权重低一些,这样设置的话,分配流量的时候,给权重高的更多流量,可以充分的发挥出后端机器的性能。
-
负载度策略
负载度策略是指当「负载均衡器」往后端转发流量的时候,会先去评估后端每台服务器的负载压力情况,对于压力比较大的后端服务器转发的请求就少一些,对于压力比较小的后端服务器可以多转发一些请求给它。
这种方式就充分的结合了后端服务器的运行状态,来动态的分配流量了,比轮询的方式更为科学一些。
但是这种方式也带来了一些弊端,因为需要动态的评估后端服务器的负载压力,那这个「负载均衡器」除了转发请求以外,还要做很多额外的工作,比如采集 连接数、请求数、CPU负载指标、IO负载指标等等,通过对这些指标进行计算和对比,判断出哪一台后端服务器的负载压力较大。
因此这种方式带来了效果优势的同时,也增加了「负载均衡器」的实现难度和维护成本。
-
响应策略
响应策略是指,当用户请求过来的时候,「负载均衡器」会优先将请求转发给当前时刻响应最快的后端服务器。
也就是说,不管后端服务器负载高不高,也不管配置如何,只要觉得这个服务器在当前时刻能最快的响应用户的请求,那么就优先把请求转发给它,这样的话,对于用户而言,体验也最好。
那「负载均衡器」是怎么知道哪一台后端服务在当前时刻响应能力最佳呢?
这就需要「负载均衡器」不停的去统计每一台后端服务器对请求的处理速度了,比如一分钟统计一次,生成一个后端服务器处理速度的排行榜。然后「负载均衡器」根据这个排行榜去转发服务。
那么这里的问题就是统计的成本了,不停的做这些统计运算本身也会消耗一些性能,同时也会增加「负载均衡器」的实现难度和维护成本。
-
哈希策略
Hash策略也比较好理解,就是将请求中的某个信息进行hash计算,然后根据后端服务器台数取模,得到一个值,算出相同值的请求就被转发到同一台后端服务器中。
常见的用法是对用户的IP或者ID进行这个策略,然后「负载均衡器」就能保证同一个IP来源或者同一个用户永远会被送到同一个后端服务器上了,一般用于处理缓存、会话等功能的时候特别好用。