github博客传送门
csdn博客传送门

Inception
详细
参数

  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. class Inception3(nn.Module):
  5. def __init__(self, num_classes=1000, aux_logits=True, transform_input=False):
  6. super(Inception3, self).__init__()
  7. self.aux_logits = aux_logits
  8. self.transform_input = transform_input
  9. self.Conv2d_1a_3x3 = BasicConv2d(3, 32, kernel_size=3, stride=2)
  10. self.Conv2d_2a_3x3 = BasicConv2d(32, 32, kernel_size=3)
  11. self.Conv2d_2b_3x3 = BasicConv2d(32, 64, kernel_size=3, padding=1)
  12. self.Conv2d_3b_1x1 = BasicConv2d(64, 80, kernel_size=1)
  13. self.Conv2d_4a_3x3 = BasicConv2d(80, 192, kernel_size=3)
  14. self.Mixed_5b = InceptionA(192, pool_features=32)
  15. self.Mixed_5c = InceptionA(256, pool_features=64)
  16. self.Mixed_5d = InceptionA(288, pool_features=64)
  17. self.Mixed_6a = InceptionB(288)
  18. self.Mixed_6b = InceptionC(768, channels_7x7=128)
  19. self.Mixed_6c = InceptionC(768, channels_7x7=160)
  20. self.Mixed_6d = InceptionC(768, channels_7x7=160)
  21. self.Mixed_6e = InceptionC(768, channels_7x7=192)
  22. if aux_logits:
  23. self.AuxLogits = InceptionAux(768, num_classes)
  24. self.Mixed_7a = InceptionD(768)
  25. self.Mixed_7b = InceptionE(1280)
  26. self.Mixed_7c = InceptionE(2048)
  27. self.fc = nn.Linear(2048, num_classes)
  28. for m in self.modules():
  29. if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
  30. import scipy.stats as stats
  31. stddev = m.stddev if hasattr(m, \'stddev\') else 0.1
  32. X = stats.truncnorm(-2, 2, scale=stddev)
  33. values = torch.Tensor(X.rvs(m.weight.data.numel()))
  34. values = values.view(m.weight.data.size())
  35. m.weight.data.copy_(values)
  36. elif isinstance(m, nn.BatchNorm2d):
  37. m.weight.data.fill_(1)
  38. m.bias.data.zero_()
  39. def forward(self, x):
  40. if self.transform_input:
  41. x = x.clone()
  42. x[:, 0] = x[:, 0] * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
  43. x[:, 1] = x[:, 1] * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
  44. x[:, 2] = x[:, 2] * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
  45. # 299 x 299 x 3
  46. x = self.Conv2d_1a_3x3(x)
  47. # 149 x 149 x 32
  48. x = self.Conv2d_2a_3x3(x)
  49. # 147 x 147 x 32
  50. x = self.Conv2d_2b_3x3(x)
  51. # 147 x 147 x 64
  52. x = F.max_pool2d(x, kernel_size=3, stride=2)
  53. # 73 x 73 x 64
  54. x = self.Conv2d_3b_1x1(x)
  55. # 73 x 73 x 80
  56. x = self.Conv2d_4a_3x3(x)
  57. # 71 x 71 x 192
  58. x = F.max_pool2d(x, kernel_size=3, stride=2)
  59. # 35 x 35 x 192
  60. x = self.Mixed_5b(x)
  61. # 35 x 35 x 256
  62. x = self.Mixed_5c(x)
  63. # 35 x 35 x 288
  64. x = self.Mixed_5d(x)
  65. # 35 x 35 x 288
  66. x = self.Mixed_6a(x)
  67. # 17 x 17 x 768
  68. x = self.Mixed_6b(x)
  69. # 17 x 17 x 768
  70. x = self.Mixed_6c(x)
  71. # 17 x 17 x 768
  72. x = self.Mixed_6d(x)
  73. # 17 x 17 x 768
  74. x = self.Mixed_6e(x)
  75. # 17 x 17 x 768
  76. if self.training and self.aux_logits:
  77. aux = self.AuxLogits(x)
  78. # 17 x 17 x 768
  79. x = self.Mixed_7a(x)
  80. # 8 x 8 x 1280
  81. x = self.Mixed_7b(x)
  82. # 8 x 8 x 2048
  83. x = self.Mixed_7c(x)
  84. # 8 x 8 x 2048
  85. x = F.avg_pool2d(x, kernel_size=8)
  86. # 1 x 1 x 2048
  87. x = F.dropout(x, training=self.training)
  88. # 1 x 1 x 2048
  89. x = x.view(x.size(0), -1)
  90. # 2048
  91. x = self.fc(x)
  92. # 1000 (num_classes)
  93. if self.training and self.aux_logits:
  94. return x, aux
  95. return x
  96. class InceptionA(nn.Module):
  97. def __init__(self, in_channels, pool_features):
  98. super(InceptionA, self).__init__()
  99. self.branch1x1 = BasicConv2d(in_channels, 64, kernel_size=1)
  100. self.branch5x5_1 = BasicConv2d(in_channels, 48, kernel_size=1)
  101. self.branch5x5_2 = BasicConv2d(48, 64, kernel_size=5, padding=2)
  102. self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1)
  103. self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)
  104. self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, padding=1)
  105. self.branch_pool = BasicConv2d(in_channels, pool_features, kernel_size=1)
  106. def forward(self, x):
  107. branch1x1 = self.branch1x1(x)
  108. branch5x5 = self.branch5x5_1(x)
  109. branch5x5 = self.branch5x5_2(branch5x5)
  110. branch3x3dbl = self.branch3x3dbl_1(x)
  111. branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
  112. branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
  113. branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
  114. branch_pool = self.branch_pool(branch_pool)
  115. outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
  116. return torch.cat(outputs, 1)
  117. class InceptionB(nn.Module):
  118. def __init__(self, in_channels):
  119. super(InceptionB, self).__init__()
  120. self.branch3x3 = BasicConv2d(in_channels, 384, kernel_size=3, stride=2)
  121. self.branch3x3dbl_1 = BasicConv2d(in_channels, 64, kernel_size=1)
  122. self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=3, padding=1)
  123. self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=3, stride=2)
  124. def forward(self, x):
  125. branch3x3 = self.branch3x3(x)
  126. branch3x3dbl = self.branch3x3dbl_1(x)
  127. branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
  128. branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
  129. branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
  130. outputs = [branch3x3, branch3x3dbl, branch_pool]
  131. return torch.cat(outputs, 1)
  132. class InceptionC(nn.Module):
  133. def __init__(self, in_channels, channels_7x7):
  134. super(InceptionC, self).__init__()
  135. self.branch1x1 = BasicConv2d(in_channels, 192, kernel_size=1)
  136. c7 = channels_7x7
  137. self.branch7x7_1 = BasicConv2d(in_channels, c7, kernel_size=1)
  138. self.branch7x7_2 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3))
  139. self.branch7x7_3 = BasicConv2d(c7, 192, kernel_size=(7, 1), padding=(3, 0))
  140. self.branch7x7dbl_1 = BasicConv2d(in_channels, c7, kernel_size=1)
  141. self.branch7x7dbl_2 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0))
  142. self.branch7x7dbl_3 = BasicConv2d(c7, c7, kernel_size=(1, 7), padding=(0, 3))
  143. self.branch7x7dbl_4 = BasicConv2d(c7, c7, kernel_size=(7, 1), padding=(3, 0))
  144. self.branch7x7dbl_5 = BasicConv2d(c7, 192, kernel_size=(1, 7), padding=(0, 3))
  145. self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1)
  146. def forward(self, x):
  147. branch1x1 = self.branch1x1(x)
  148. branch7x7 = self.branch7x7_1(x)
  149. branch7x7 = self.branch7x7_2(branch7x7)
  150. branch7x7 = self.branch7x7_3(branch7x7)
  151. branch7x7dbl = self.branch7x7dbl_1(x)
  152. branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
  153. branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
  154. branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
  155. branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
  156. branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
  157. branch_pool = self.branch_pool(branch_pool)
  158. outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
  159. return torch.cat(outputs, 1)
  160. class InceptionD(nn.Module):
  161. def __init__(self, in_channels):
  162. super(InceptionD, self).__init__()
  163. self.branch3x3_1 = BasicConv2d(in_channels, 192, kernel_size=1)
  164. self.branch3x3_2 = BasicConv2d(192, 320, kernel_size=3, stride=2)
  165. self.branch7x7x3_1 = BasicConv2d(in_channels, 192, kernel_size=1)
  166. self.branch7x7x3_2 = BasicConv2d(192, 192, kernel_size=(1, 7), padding=(0, 3))
  167. self.branch7x7x3_3 = BasicConv2d(192, 192, kernel_size=(7, 1), padding=(3, 0))
  168. self.branch7x7x3_4 = BasicConv2d(192, 192, kernel_size=3, stride=2)
  169. def forward(self, x):
  170. branch3x3 = self.branch3x3_1(x)
  171. branch3x3 = self.branch3x3_2(branch3x3)
  172. branch7x7x3 = self.branch7x7x3_1(x)
  173. branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
  174. branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
  175. branch7x7x3 = self.branch7x7x3_4(branch7x7x3)
  176. branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
  177. outputs = [branch3x3, branch7x7x3, branch_pool]
  178. return torch.cat(outputs, 1)
  179. class InceptionE(nn.Module):
  180. def __init__(self, in_channels):
  181. super(InceptionE, self).__init__()
  182. self.branch1x1 = BasicConv2d(in_channels, 320, kernel_size=1)
  183. self.branch3x3_1 = BasicConv2d(in_channels, 384, kernel_size=1)
  184. self.branch3x3_2a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))
  185. self.branch3x3_2b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))
  186. self.branch3x3dbl_1 = BasicConv2d(in_channels, 448, kernel_size=1)
  187. self.branch3x3dbl_2 = BasicConv2d(448, 384, kernel_size=3, padding=1)
  188. self.branch3x3dbl_3a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))
  189. self.branch3x3dbl_3b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))
  190. self.branch_pool = BasicConv2d(in_channels, 192, kernel_size=1)
  191. def forward(self, x):
  192. branch1x1 = self.branch1x1(x)
  193. branch3x3 = self.branch3x3_1(x)
  194. branch3x3 = [
  195. self.branch3x3_2a(branch3x3),
  196. self.branch3x3_2b(branch3x3),
  197. ]
  198. branch3x3 = torch.cat(branch3x3, 1)
  199. branch3x3dbl = self.branch3x3dbl_1(x)
  200. branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
  201. branch3x3dbl = [
  202. self.branch3x3dbl_3a(branch3x3dbl),
  203. self.branch3x3dbl_3b(branch3x3dbl),
  204. ]
  205. branch3x3dbl = torch.cat(branch3x3dbl, 1)
  206. branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
  207. branch_pool = self.branch_pool(branch_pool)
  208. outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
  209. return torch.cat(outputs, 1)
  210. class InceptionAux(nn.Module):
  211. def __init__(self, in_channels, num_classes):
  212. super(InceptionAux, self).__init__()
  213. self.conv0 = BasicConv2d(in_channels, 128, kernel_size=1)
  214. self.conv1 = BasicConv2d(128, 768, kernel_size=5)
  215. self.conv1.stddev = 0.01
  216. self.fc = nn.Linear(768, num_classes)
  217. self.fc.stddev = 0.001
  218. def forward(self, x):
  219. # 17 x 17 x 768
  220. x = F.avg_pool2d(x, kernel_size=5, stride=3)
  221. # 5 x 5 x 768
  222. x = self.conv0(x)
  223. # 5 x 5 x 128
  224. x = self.conv1(x)
  225. # 1 x 1 x 768
  226. x = x.view(x.size(0), -1)
  227. # 768
  228. x = self.fc(x)
  229. # 1000
  230. return x
  231. class BasicConv2d(nn.Module):
  232. def __init__(self, in_channels, out_channels, **kwargs):
  233. super(BasicConv2d, self).__init__()
  234. self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
  235. self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
  236. def forward(self, x):
  237. x = self.conv(x)
  238. x = self.bn(x)
  239. return F.relu(x, inplace=True)
  240. if __name__ == \'__main__\':
  241. # \'Inception3\'
  242. # Example
  243. net = Inception3()
  244. print(net)

版权声明:本文为Mrzhang3389原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/Mrzhang3389/p/10127157.html