pytorch之inception_v3的实现案例
更多python教程请到: 菜鸟教程www.piaodoo.com
人人影视www.sfkyty.com
16影视www.591319.com
星辰影院www.591319.com
如下所示:
from __future__ import print_function from __future__ import division import torch import torch.nn as nn import torch.optim as optim import numpy as np import torchvision from torchvision import datasets, models, transforms import matplotlib.pyplot as plt import time import os import copy import argparse print("PyTorch Version: ",torch.__version__) print("Torchvision Version: ",torchvision.__version__)Top level data directory. Here we assume the format of the directory conforms
to the ImageFolder structure
数据集路径,路径下的数据集分为训练集和测试集,也就是train 以及val,train下分为两类数据1,2,val集同理
data_dir = "/home/dell/Desktop/data/切割图像" # Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception] model_name = "inception" # Number of classes in the dataset num_classes = 2#两类数据1,2Batch size for training (change depending on how much memory you have)
batch_size = 32#batchsize尽量选取合适,否则训练时会内存溢出
Number of epochs to train for
num_epochs = 1000
Flag for feature extracting. When False, we finetune the whole model,
when True we only update the reshaped layer params
feature_extract = True
参数设置,使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多
parser = argparse.ArgumentParser(description=\'PyTorch inception\')
parser.add_argument(\'--outf\', default=\'/home/dell/Desktop/dj/inception/\', help=\'folder to output images and model checkpoints\') #输出结果保存路径
parser.add_argument(\'--net\', default=\'/home/dell/Desktop/dj/inception/inception.pth\', help="path to net (to continue training)") #恢复训练时的模型路径
args = parser.parse_args()
训练函数
def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,is_inception=False):since = time.time()
val_acc_history = []
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
print("Start Training, InceptionV3!")
with open("acc.txt", "w") as f1:
with open("log.txt", "w")as f2:
for epoch in range(num_epochs):
print(\'Epoch {}/{}\'.format(epoch+1, num_epochs))
print(\'*\' * 10)
# Each epoch has a training and validation phase
for phase in [\'train\', \'val\']:
if phase == \'train\':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate moderunning_loss = 0.0 running_corrects = 0 # Iterate over data. for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) # zero the parameter gradients optimizer.zero_grad() # forward # track history if only in train with torch.set_grad_enabled(phase == \'train\'): if is_inception and phase == \'train\': # From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958 outputs, aux_outputs = model(inputs) loss1 = criterion(outputs, labels) loss2 = criterion(aux_outputs, labels) loss = loss1 + 0.4*loss2 else: outputs = model(inputs) loss = criterion(outputs, labels) _, preds = torch.max(outputs, 1) # backward + optimize only if in training phase if phase == \'train\': loss.backward() optimizer.step() # statistics running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / len(dataloaders[phase].dataset) epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset) print(\'{} Loss: {:.4f} Acc: {:.4f}\'.format(phase, epoch_loss, epoch_acc)) f2.write(\'{} Loss: {:.4f} Acc: {:.4f}\'.format(phase, epoch_loss, epoch_acc)) f2.write(\'\n\') f2.flush() # deep copy the model if phase == \'val\': if (epoch+1)%50==0: #print(\'Saving model......\') torch.save(model.state_dict(), \'%s/inception_%03d.pth\' % (args.outf, epoch + 1)) f1.write("EPOCH=%03d,Accuracy= %.3f%%" % (epoch + 1, epoch_acc)) f1.write(\'\n\') f1.flush() if phase == \'val\' and epoch_acc > best_acc: f3 = open("best_acc.txt", "w") f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1,epoch_acc)) f3.close() best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) if phase == \'val\': val_acc_history.append(epoch_acc)
time_elapsed = time.time() - since
print(\'Training complete in {:.0f}m {:.0f}s\'.format(time_elapsed // 60, time_elapsed % 60))
print(\'Best val Acc: {:4f}\'.format(best_acc))load best model weights
model.load_state_dict(best_model_wts)
return model, val_acc_history是否更新参数
def set_parameter_requires_grad(model, feature_extracting):
if feature_extracting:
for param in model.parameters():
param.requires_grad = Falsedef initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
Initialize these variables which will be set in this if statement. Each of these
variables is model specific.
model_ft = None
input_size = 0if model_name == "resnet":
""" Resnet18
"""
model_ft = models.resnet18(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, num_classes)
input_size = 224elif model_name == "alexnet":
""" Alexnet
"""
model_ft = models.alexnet(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.classifier[6].in_features
model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
input_size = 224elif model_name == "vgg":
""" VGG11_bn
"""
model_ft = models.vgg11_bn(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.classifier[6].in_features
model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
input_size = 224elif model_name == "squeezenet":
""" Squeezenet
"""
model_ft = models.squeezenet1_0(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
model_ft.num_classes = num_classes
input_size = 224elif model_name == "densenet":
""" Densenet
"""
model_ft = models.densenet121(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.classifier.in_features
model_ft.classifier = nn.Linear(num_ftrs, num_classes)
input_size = 224elif model_name == "inception":
""" Inception v3
Be careful, expects (299,299) sized images and has auxiliary output
"""
model_ft = models.inception_v3(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
# Handle the auxilary net
num_ftrs = model_ft.AuxLogits.fc.in_features
model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes)
# Handle the primary net
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs,num_classes)
input_size = 299else:
print("Invalid model name, exiting...")
exit()return model_ft, input_size
Initialize the model for this run
model_ft, input_size = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True)
Print the model we just instantiated
print(model_ft)
准备数据
data_transforms = {
\'train\': transforms.Compose([
transforms.RandomResizedCrop(input_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
\'val\': transforms.Compose([
transforms.Resize(input_size),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}print("Initializing Datasets and Dataloaders...")
Create training and validation datasets
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in [\'train\', \'val\']}
Create training and validation dataloaders
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=0) for x in [\'train\', \'val\']}
Detect if we have a GPU available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
\'\'\'
是否加载之前训练过的模型
we=\'/home/dell/Desktop/dj/inception_050.pth\'
model_ft.load_state_dict(torch.load(we))
\'\'\'Send the model to GPU
model_ft = model_ft.to(device)
params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:
params_to_update = []
for name,param in model_ft.named_parameters():
if param.requires_grad == True:
params_to_update.append(param)
print("\t",name)
else:
for name,param in model_ft.named_parameters():
if param.requires_grad == True:
print("\t",name)Observe that all parameters are being optimized
optimizer_ft = optim.SGD(params_to_update, lr=0.001, momentum=0.9)
Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=30, gamma=0.95)
Setup the loss fxn
criterion = nn.CrossEntropyLoss()
Train and evaluate
model_ft, hist = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs, is_inception=(model_name=="inception"))
\'\'\'
随机初始化时的训练程序
Initialize the non-pretrained version of the model used for this run
scratch_model,_ = initialize_model(model_name, num_classes, feature_extract=False, use_pretrained=False)
scratch_model = scratch_model.to(device)
scratch_optimizer = optim.SGD(scratch_model.parameters(), lr=0.001, momentum=0.9)
scratch_criterion = nn.CrossEntropyLoss()
_,scratch_hist = train_model(scratch_model, dataloaders_dict, scratch_criterion, scratch_optimizer, num_epochs=num_epochs, is_inception=(model_name=="inception"))Plot the training curves of validation accuracy vs. number
of training epochs for the transfer learning method and
the model trained from scratch
ohist = []
shist = []ohist = [h.cpu().numpy() for h in hist]
shist = [h.cpu().numpy() for h in scratch_hist]plt.title("Validation Accuracy vs. Number of Training Epochs")
plt.xlabel("Training Epochs")
plt.ylabel("Validation Accuracy")
plt.plot(range(1,num_epochs+1),ohist,label="Pretrained")
plt.plot(range(1,num_epochs+1),shist,label="Scratch")
plt.ylim((0,1.))
plt.xticks(np.arange(1, num_epochs+1, 1.0))
plt.legend()
plt.show()
\'\'\'
以上这篇pytorch之inception_v3的实现案例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持菜鸟教程www.piaodoo.com。