昨天做的字节跳动那一题比较简单,直接采用贪心算法直接就能求解,但是我最近看到一篇介绍动态规划的博文,发现这种题目并没有那么简单,只是刚好那一题用贪心算法直接求解即可。

题目:某国有四种货币面值 1元 面值4 元 面值 8 元 面值 16这四种。小明有W元问如果把W元换成这几种货币,最少需要多少张?

代码:

def f(n):
    Sum = 0
    while n > 0:
        if n - 16 >= 0:
            n -= 16
            Sum += 1
        elif n - 8 >= 0:
            n -= 8
            Sum += 1
        elif n - 4 >= 0:
            n -= 4
            Sum += 1
        elif n - 1 >= 0:
            n -= 1
            Sum += 1
    return Sum

当然能用这种方法肯定特别简单,但是如果我们把面值换一下,比如 1 , 5, 11

如果有 15元钱 用贪心算法肯定先换一张 11元剩下四元只能用一元的来交换,然后答案是最少 5张,可是如果我们用五元钱来交换很明显只要用三张。所以在这样的情况下贪心算法肯定不合适了。接下来我们来分析一下这几种情况假设,你有十五元钱你该如何兑换呢和明显刚开始就三种情况,我第一张兑换11元 然后就变成了

 f(15-11) + 1 = f(4) + 1

,这里加1的意思是我们兑换了一张十一元纸币。

第二种情况

f(15-5) + 1 = f(10) + 1

第三种情况:

f(15-1) + 1 = f(14) + 1

 很明显我们要去的就是 min(f(4), f(10), f(f14)) + 1

于是我们就可以得出 f(n) = min(f(n-11), f(n-5), f(n-1)) + 1 我自己感觉动态规划的关键是找到递推式,然后我们从小到大计算。这样我们就可以得出代码了:

def f(n):
    #递归出口
    if n == 0:
        return 0
    #我们首先假设需要兑换n张
    Sum = n
    #经过这几个if我们就更新出了在这三种情况中最小的Sum
    #这几个值排列也有关系 我们把减一放在最上面减11放在最下面因为减一所产生的sum值最大
    if n - 1 >= 0:
        #注意这个 + 1 是放在 min的括号里面 
        Sum = min(Sum, f(n-1) + 1)
    if n - 5 >= 0:
        Sum = min(Sum, f(n-5) + 1)
    if n - 11 >= 0:
        Sum = min(Sum, f(n-11) + 1)
    return Sum
if __name__ == "__main__":
    n = 50
    for i in range(n):
        print(\'f({})= {}\'.format(i, f(i)))

你以为到这就完了吗,当然不是如果你运行一下代码就会发现n到五十几就需要好几秒,因为我们没求出一个n时,都是从n=1开始的,我们还可以继续改进,很简单的用空间换时间,我们取一个字典存我们每一次计算的值这样就不会重复计算了。

s = {}
def f(n):
    global s
    #递归出口
    if n == 0:
        return 0
    #我们首先假设需要兑换n张
    Sum = n
    #经过这几个if我们就更新出了在这三种情况中最小的Sum
    #这几个值排列也有关系 我们把减一放在最上面减11放在最下面因为减一所产生的sum值最大
    if n - 1 >= 0:
        t = s.get(\'f({})\'.format(n-1))
        if t is not None:
            Sum = min(Sum, t + 1)
        else:
            #注意这个 + 1 是放在 min的括号里面 
            Sum = min(Sum, f(n-1) + 1)
    if n - 5 >= 0:
        t = s.get(\'f({})\'.format(n-5))
        if t is not None:
            Sum = min(Sum, t + 1)
        else:
            Sum = min(Sum, f(n-5) + 1)
    if n - 11 >= 0:
        t = s.get(\'f({})\'.format(n-11))
        if t is not None:
            Sum = min(Sum, t + 1)
        else:
            Sum = min(Sum, f(n-11) + 1)
    s[\'f({})\'.format(n)] = Sum
    return Sum
if __name__ == "__main__":
    n = 50
    for i in range(n):
        print(\'f({})= {}\'.format(i, f(i)))

 

版权声明:本文为python-zkp原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/python-zkp/p/10546105.html