Java中的策略模式 策略模式实际应用场景-容错恢复机制
策略模式
策略模式的用意是针对一组算法,将每一个算法封装到具有共同接口的独立类中,从而使得它们可以相互替换。策略模式使得算法可以在不影响到客户端的情况下发生变化。
策略模式的结构
策略模式是对算法的包装,是把使用算法的责任和算法本身分开。策略模式通常是把一系列的算法包装到一系列的策略类里面,作为一个抽象策略类的子类。
策略模式涉及到三个角色:
1、环境角色
持有一个策略Strategy的引用
2、抽象策略角色
这是一个抽象角色,通常由一个接口或抽象类实现,此角色给出所有具体策略类所需的接口
3、具体策略角色
包装了相关算法或行为
容错恢复机制是应用程序开发中非常常见的功能。那么什么是容错恢复呢?简单点说就是:程序运行的时候,正常情况下应该按照某种方式来做,如果按照某种方式来做发生错误的话,系统并不会崩溃,也不会就此不能继续向下运行了,而是有容忍出错的能力,不但能容忍程序运行出现错误,还提供出现错误后的备用方案,也就是恢复机制,来代替正常执行的功能,使程序继续向下运行。
举个实际点的例子吧,比如在一个系统中,所有对系统的操作都要有日志记录,而且这个日志还需要有管理界面,这种情况下通常会把日志记录在数据库里面,方便后续的管理,但是在记录日志到数据库的时候,可能会发生错误,比如暂时连不上数据库了,那就先记录在文件里面,然后在合适的时候把文件中的记录再转录到数据库中。
对于这样的功能的设计,就可以采用策略模式,把日志记录到数据库和日志记录到文件当作两种记录日志的策略,然后在运行期间根据需要进行动态的切换。
示例
1.定义日志策略接口
1 public interface LogStrategy { 2 3 public void log(String msg); 4 5 }
2.实现日志策略接口
1)记录到数据库
1 public class DbLog implements LogStrategy{ 2 3 public void log(String msg) { 4 5 System.out.println("现在把 \'"+msg+"\' 记录到数据库中"); 6 7 } 8 9 }
2)记录到文件
1 public class FileLog implements LogStrategy{ 2 3 public void log(String msg) { 4 5 System.out.println("现在把 \'"+msg+"\' 记录到文件中"); 6 7 } 8 9 }
3)接下来定义使用这些策略的上下文,注意这次是在上下文里面实现具体策略算法的选择,所以不需要客户端来指定具体的策略算法了,示例代码如下:
1 public class LogContext { 2 3 public void log(String msg) { 4 5 LogStrategy strategy = new DbLog(); 6 try { 7 strategy .log(msg); 8 } catch(Exception e) { 9 // 出错,记录到文件 10 strategy = new FileLog(); 11 strategy.log(msg); 12 } 13 } 14 }
4.小结
通过上面的示例,会看到策略模式的一种简单应用,也顺便了解一下基本的容错恢复机制的设计和实现。在实际的应用中,需要设计容错恢复的系统一般要求都比较高,应用也会比较复杂,但是基本的思路是差不多的。
Java中的策略接口-Comparator接口
比方说Collections里面有一个sort方法,因为集合里面的元素有可能是复合对象,复合对象并不像基本数据类型,可以根据大小排序,复合对象怎么排序呢?基于这个问题考虑,Java要求如果定义的复合对象要有排序的功能,就自行实现Comparable接口或Comparator接口,看一下sort带Comparator的重载方法:
1 public static <T> void sort(List<T> list, Comparator<? super T> c) { 2 Object[] a = list.toArray(); 3 Arrays.sort(a, (Comparator)c); 4 ListIterator i = list.listIterator(); 5 for (int j=0; j<a.length; j++) { 6 i.next(); 7 i.set(a[j]); 8 } 9 }
看一下第3行:
1 public static <T> void sort(T[] a, Comparator<? super T> c) { 2 T[] aux = (T[])a.clone(); 3 if (c==null) 4 mergeSort(aux, a, 0, a.length, 0); 5 else 6 mergeSort(aux, a, 0, a.length, 0, c); 7 }
再看一下第6行:
1 private static void mergeSort(Object[] src, 2 Object[] dest, 3 int low, int high, int off, 4 Comparator c) { 5 int length = high - low; 6 7 // Insertion sort on smallest arrays 8 if (length < INSERTIONSORT_THRESHOLD) { 9 for (int i=low; i<high; i++) 10 for (int j=i; j>low && c.compare(dest[j-1], dest[j])>0; j--) 11 swap(dest, j, j-1); 12 return; 13 } 14 15 // Recursively sort halves of dest into src 16 int destLow = low; 17 int destHigh = high; 18 low += off; 19 high += off; 20 int mid = (low + high) >>> 1; 21 mergeSort(dest, src, low, mid, -off, c); 22 mergeSort(dest, src, mid, high, -off, c); 23 24 // If list is already sorted, just copy from src to dest. This is an 25 // optimization that results in faster sorts for nearly ordered lists. 26 if (c.compare(src[mid-1], src[mid]) <= 0) { 27 System.arraycopy(src, low, dest, destLow, length); 28 return; 29 } 30 31 // Merge sorted halves (now in src) into dest 32 for(int i = destLow, p = low, q = mid; i < destHigh; i++) { 33 if (q >= high || p < mid && c.compare(src[p], src[q]) <= 0) 34 dest[i] = src[p++]; 35 else 36 dest[i] = src[q++]; 37 } 38 }
第10行,根据Comparator接口实现类的compare方法的返回结果决定是否要swap(交换)。
这就是策略模式,我们可以给Collections的sort方法传入不同的Comparator的实现类作为不同的比较策略。不同的比较策略,对同一个集合,可能会产生不同的排序结果。
策略模式优缺点
优点
1、避免了多重条件if…else if…else语句,多重条件语句并不容易维护
2、策略模式提供了管理相关算法簇的办法,恰当使用继承可以把公共代码移到父类,从而避免了代码重复
缺点
1、客户端必须知道所有的策略类,并自行决定使用 哪一个策略,这意味着客户端必须理解这些算法的区别,以便选择恰当的算法
2、如果备选策略很多,对象的数据会很多