如何理解数学期望[转载]
转自:https://blog.csdn.net/tiankong_/article/details/78547981
https://blog.csdn.net/jteng/article/details/54632311
1.什么是数学期望
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和
严格定义:
2含义
反映随机变量平均取值的大小。
//就是加权平均值,而这个权就是概率(通常由频率估计得到)。
3.数学期望(均值)和算术平均值(平均数)的关系
(1)平均数是根据实际结果统计得到的随机变量样本计算出来的算术平均值,和实验本身有关,
而数学期望是完全由随机变量的概率分布所确定的,和实验本身无关。
以摇骰子为例,假设我们摇4次骰子,摇出的结果依次为5,5,6,4。设摇出的结果为随机变量X,,则X在这次实验中的平均数(5+5+6+4)/4= 5。
而X的期望呢?和这次的实验本身无关,只和X的概率分布有关。X的概率分布如下:
E(X) = 1*1/6+2*1/6+3*1/6+4*1/6+5*1/6+6*1/6 = (1+2+3+4+5+6)*1/6 = 3.5
实验的多少是可以改变平均数的,而在你的分布不变的情况下,期望是不变的
(2)我们可以从概率和统计的角度给出理解
先给出结论,摘自知乎:
如果我们能进行无穷次随机实验并计算出其样本的平均数的话,那么这个平均数其实就是期望。
当然实际上根本不可能进行无穷次实验,但是实验样本的平均数会随着实验样本的增多越来越接近期望,就像频率随着实验样本的增多会越来越接近概率一样
如果说概率是频率随样本趋于无穷的极限
那么期望就是平均数随样本趋于无穷的极限
上述表达的意思其实也就是弱大数定理
//看完这一段理解,感觉透彻了许多!
4.抛硬币问题
//这里的联合概率分布不太理解。