差分电路与Multisim仿真学习笔记
前言
今天写三种常见的差分放大电路:基本形式、长尾式、恒流源式
基本形式差分放大电路
下图为基本形式差分放大电路
![基本形式差分放大电路](https://img-blog.csdnimg.cn/20191221220257908.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2w5ODA0MDE=,size_16,color_FFFFFF,t_70#pic_center =960×640)
下图左边为差模输入,右边为共模输入,其主要技术指标如下:
![差共](https://img-blog.csdnimg.cn/20191221222712225.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2w5ODA0MDE=,size_16,color_FFFFFF,t_70#pic_center =960×300)
- 差模输入电压\(U_{Id}=U_{I1}-U_{I2}\):两个输入电压大小相等,极性相反。
- 共模输入电压\(U_{Ic}=(U_{I1}+U_{I2})/2\):两个输入电压大小相等,极性相同。
- 输入的任意电压可认为是某个差模输入电压与共模输入电压的组合。
- 差模电压放大倍数\(A_d=\frac{\Delta{U_o}}{{\Delta}U_{Id}}\):越大越好
- 共模电压放大倍数\(A_c=\frac{\Delta{U_o}}{{\Delta}U_{Ic}}\):越小越好
-
共模抑制比\(K_{CMR}=20lg|\frac{A_d}{A_c}|(dB)\):\(K_{CMR}\)越大说明抑制零点漂移能力越强
仿真结果如下
![基本形式差分放大](https://img-blog.csdnimg.cn/20191221223856707.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2w5ODA0MDE=,size_16,color_FFFFFF,t_70#pic_center =960×640)
参数设计与第一篇讲的是一样的,输出电压波形图如下图所示
长尾式差分放大电路
下图为长尾式差分放大电路
![长尾](https://img-blog.csdnimg.cn/20191221225534683.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2w5ODA0MDE=,size_16,color_FFFFFF,t_70#pic_center =960×640)
\(R_e\)作用是引入共模负反馈(即对共模输入有负反馈,对差模无),减小了\(A_c\),,提高了共模抑制比。\(R_e\)越大,则抑制零漂效果越好,负电源\(V_{EE}\)用来补偿\(R_e\)的直流压降。引入\(R_e\)后,由\(V_{EE}\)提供基极电流,所以不接基极电阻\(R_b\)。
设计如下图所示
静态分析
输入电压为零时,\(\beta_1=\beta_2\),\(r_{be1}=r_{be2}\),\(R_2=R_4\),\(R_1=R_3\),所以静态基极电流、集电极电流、集电极电压、基极与发射极间电压都相等。
基极回路$$I_{BQ1}R_1+U_{BEQ1}+2I_{EQ}R_5=V_{EE}$$
取\(I_{BQ}=40uA\),所以\(R_1+2(1+\beta_1)R_5=\frac{12V-0.7V}{0.04mA}=282.5k\Omega\),取\(R_1=R_3=1k\Omega\),\(R_5=1k\Omega\)。
设置\(R_2=R_4\)和\(R_5\)使静态基极电位对地在\(0V\)附近,取\(I_{CQ}=5.6mA\)、\(U_{CQ}=V_{CC}/2=6V\),则\(R_2=R_4=\frac{12V-6V}{5.6mA}\approx1.1k\Omega\)。
动态分析
由交流通路得$$\Delta{i_{B1}}=\frac{\Delta{u_{I1}}}{R_1+r_{be1}}$$
则$$\Delta{u_{C1}}=-\beta_1\Delta{i_{B1}}(R_2//\frac{R_6}{2})=-\frac{\beta(R_2//\frac{R_6}{2})}{R_1+r_{be1}}\Delta{u_{I1}}$$
同理可得\(\Delta{u_{C2}}\),则输出电压$$\Delta{u_{o}}=\Delta{u_{C1}}-\Delta{u_{C2}}=-\frac{\beta(R_2//\frac{R_6}{2})}{R_1+r_{be1}}(\Delta{u_{I1}}-\Delta{u_{I2}})$$
则差模电压放大倍数$$A_d=\frac{\Delta{u_{o}}}{\Delta{u_{I1}}-\Delta{u_{I2}}}=-\frac{\beta(R_2//\frac{R_6}{2})}{R_1+r_{be1}}$$
差模输入电阻$$R_{id}=2(R_1+r_{be1})$$
输出电阻为$$R_o=2R_c$$
此电路差模电压放大倍数\(A_d=\frac{584mV}{20mV}\approx=29倍\)
输出电压波形图如下图所示
恒流源式差分放大电路设计
长尾式\(R_e\)的值受负电源\(V_{EE}\)大小的影响,为了不要求过高的负电源,采用三极管代替长尾电阻。下图为恒流源式式差分放大电路
![恒源式](https://img-blog.csdnimg.cn/20191223151444202.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2w5ODA0MDE=,size_16,color_FFFFFF,t_70#pic_center =960×840)
1. 确定直流电源电压
这里选\(12V\)正电源和\(-12V\)负电源。
2. 确定\(R_2\)和\(R_4\)
静态集电极电流取\(I_{CQ1}=I_{CQ2}=4mA\)。
静态集电极电位取正电源的一半\(U_{CQ1}=U_{CQ2}=V_{CC}/2=6V\),则\(R_2=R_4=6V/4mA=1.5k\Omega\)。
3. 恒流电路的设计
取\(Q_1\)和\(Q_2\)的静态基极电位(对地)为零,则\(U_{CQ}=-0.7V(对地)\)。
取\(R_5\)的压降为2V,因为\(I_{EQ3}=I_{CQ3}=I_{EQ1}+I_{EQ1}=8mA\),则\(R_5=\frac{2V}{8mA}=250\Omega\),取标称值电阻值\(240\Omega\)。
\(R_6\)和\(R_7\)确定方法和之前的共射放大电路一样,取标称电阻值得 \(R_6=5.1k\Omega\)和\(R_7=36k\Omega\)。
4. 确定\(R_1\)和\(R_3\)
\(R_1\)和\(R_3\)的值影响输入电阻,这里取\(R_1=R_3=1k\Omega\)。
\(C_1\)和\(C_2\)取\(10uF\)。
5. Multisim仿真验证
设置好参数进行仿真,如下图
![恒源式仿真](https://img-blog.csdnimg.cn/20191223155926661.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2w5ODA0MDE=,size_16,color_FFFFFF,t_70#pic_center =960×720)
此电路差模电压放大倍数\(A_d=\frac{2.593V}{50mV}\approx52倍\)
输出电压波形如下图所示
忙里偷闲完成一篇