程序员的数学--数学归纳法(0)
假设现在有一排多米诺骨牌,那么如何将他们推倒呢?
我们需要做到两点:
第一点:把第一个骨牌推倒
第二点:保证前一个骨牌可以把后一个骨牌推倒
而数学归纳法和多米诺骨牌有很多的相似之处。
接下来我们举一个例子
例子1:A(n)=nx2为偶数
由于当n=0时, 0x2=0,0是偶数,故条件成立
那么当n=1的情况呢, 1X2=2, 2是偶数,故条件成立
那么我们可以断言,对于0以上所有的整数n,命题都成立。
例子2:B(n)=nX3 都是偶数
当n=0时,0X3=0, 故条件是成立的
而当n=1时, 1X3=3, 而3是奇数,故命题不成立
那么我们可以看出,这样一个接着一个的判断是否太过繁琐了呢?
于是,我们在这里引出数学归纳法
数学归纳法是证明有关整数的断言对于0以上的所有整数是否成立时所用的方法。
步骤1:
证明 P(0) 成立
步骤2:
证明无论k为0以上的任意一个整数,都存在 P(k)成立,则P(k+1)成立。
步骤1,我们可以称其为基底(base)
步骤2,我们可以称作归纳(induction)
接下来,我们来看看一道例题
求出奇数的和
断言Q(n):对于1以上的所有整数,都有
1+3+5+7+。。。+(2n-1)=n^2 成立
步骤1:基底的证明
证明Q(1)成立,
因为Q(1)=1=1^2
故基底证明完毕
步骤2:归纳的证明
我们假设Q(k)成立,即:
1+3+5+7+…+(2k-1)=k^2
则我们需要证明Q(k+1)
1+3+5+7+…+(2(k+1)-1)=(k+1)^2
Q(k+1)的左边=1+3+5+7+…+(2k-1)+(2(k+1)-1)
=k^2+2(k+1)-1
=k^2+2k+1
Q(k+1)的右边=(k+1)^2
=k^2+2k+1
左右计算相同
由此可得出Q(k)可以推出Q(k+1)
至此,我们可以说我们用数学归纳法推导出了断言Q(n)。证明这个断言是成立的
参考文献:
1.程序员的数学 【日】结成浩