沉淀再出发:java中线程池解析
java线程池的基本概念和使用。
沉淀再出发:java中线程池解析
一、前言
在多线程执行的环境之中,如果线程执行的时间短但是启动的线程又非常多,线程运转的时间基本上浪费在了创建和销毁上面,因此有没有一种方式能够让一个线程执行完自己的任务之后又被重复使用呢?线程池的出现就是为了解决这个问题。到了现在,我们知道的池已经有很多了,比如IP池,在NAT协议中使用,比如缓存机制,其实本质上就是重复利用已经产生的资源,从而减少对新资源的使用,以此来缓解对内存和CPU的压力,或者加快执行的效率。
二、线程池的基本理解
2.1、线程池的概念
多线程的异步执行方式,虽然能够最大限度发挥多核计算机的计算能力,但是如果不加控制,反而会对系统造成负担。线程本身也要占用内存空间,大量的线程会占用内存资源并且可能会导致Out of Memory。即便没有这样的情况,大量的线程回收也会给GC带来很大的压力。为了避免重复的创建线程,线程池的出现可以让线程进行复用。通俗点讲,当有工作来,就会向线程池拿一个线程,当工作完成后,并不是直接关闭线程,而是将这个线程归还给线程池供其他任务使用。
Executor是一个顶层接口,在它里面只声明了一个方法execute(Runnable),返回值为void,参数为Runnable类型,从字面意思可以理解,就是用来执行传进去的任务的;
然后ExecutorService接口继承了Executor接口,并声明了一些方法:submit、invokeAll、invokeAny以及shutDown等;
抽象类AbstractExecutorService实现了ExecutorService接口,基本实现了ExecutorService中声明的所有方法;
然后ThreadPoolExecutor继承了类AbstractExecutorService。
在ThreadPoolExecutor类中有几个非常重要的方法:
1 execute() 2 submit() 3 shutdown() 4 shutdownNow()
execute()方法实际上是Executor中声明的方法,在ThreadPoolExecutor进行了具体的实现,这个方法是ThreadPoolExecutor的核心方法,通过这个方法可以向线程池提交一个任务,交由线程池去执行。
submit()方法是在ExecutorService中声明的方法,在AbstractExecutorService就已经有了具体的实现,在ThreadPoolExecutor中并没有对其进行重写,这个方法也是用来向线程池提交任务的,但是它和execute()方法不同,它能够返回任务执行的结果,去看submit()方法的实现,会发现它实际上还是调用的execute()方法,只不过它利用了Future来获取任务执行结果。
shutdown()和shutdownNow()是用来关闭线程池的。
还有很多其他的方法,比如:getQueue() 、getPoolSize() 、getActiveCount()、getCompletedTaskCount()等获取与线程池相关属性的方法。
2.2、线程池的源码分析
java.uitl.concurrent.ThreadPoolExecutor类是线程池中最核心的一个类,因此如果要透彻地了解Java中的线程池,必须先了解这个类。
让我们看一个例子:
1 package com.threadpool.test; 2 3 import java.util.concurrent.ArrayBlockingQueue; 4 import java.util.concurrent.ThreadPoolExecutor; 5 import java.util.concurrent.TimeUnit; 6 7 public class ThreadPoolTest { 8 public static void main(String[] args) { 9 ThreadPoolExecutor executor = new ThreadPoolExecutor(5, 10, 200, TimeUnit.MILLISECONDS, 10 new ArrayBlockingQueue<Runnable>(5)); 11 12 for(int i=0;i<15;i++){ 13 MyTask myTask = new MyTask(i); 14 executor.execute(myTask); 15 System.out.println("线程池中线程数目:"+executor.getPoolSize()+",队列中等待执行的任务数目:"+ 16 executor.getQueue().size()+",已执行玩别的任务数目:"+executor.getCompletedTaskCount()); 17 } 18 executor.shutdown(); 19 } 20 } 21 22 23 class MyTask implements Runnable { 24 private int taskNum; 25 26 public MyTask(int num) { 27 this.taskNum = num; 28 } 29 30 public void run() { 31 System.out.println("正在执行task "+taskNum); 32 try { 33 Thread.currentThread().sleep(4000); 34 } catch (InterruptedException e) { 35 e.printStackTrace(); 36 } 37 System.out.println("task "+taskNum+"执行完毕"); 38 } 39 }
运行结果:
1 线程池中线程数目:1,队列中等待执行的任务数目:0,已执行玩别的任务数目:0 2 线程池中线程数目:2,队列中等待执行的任务数目:0,已执行玩别的任务数目:0 3 线程池中线程数目:3,队列中等待执行的任务数目:0,已执行玩别的任务数目:0 4 线程池中线程数目:4,队列中等待执行的任务数目:0,已执行玩别的任务数目:0 5 线程池中线程数目:5,队列中等待执行的任务数目:0,已执行玩别的任务数目:0 6 正在执行task 4 7 正在执行task 3 8 正在执行task 2 9 正在执行task 1 10 线程池中线程数目:5,队列中等待执行的任务数目:1,已执行玩别的任务数目:0 11 线程池中线程数目:5,队列中等待执行的任务数目:2,已执行玩别的任务数目:0 12 线程池中线程数目:5,队列中等待执行的任务数目:3,已执行玩别的任务数目:0 13 线程池中线程数目:5,队列中等待执行的任务数目:4,已执行玩别的任务数目:0 14 线程池中线程数目:5,队列中等待执行的任务数目:5,已执行玩别的任务数目:0 15 线程池中线程数目:6,队列中等待执行的任务数目:5,已执行玩别的任务数目:0 16 线程池中线程数目:7,队列中等待执行的任务数目:5,已执行玩别的任务数目:0 17 线程池中线程数目:8,队列中等待执行的任务数目:5,已执行玩别的任务数目:0 18 线程池中线程数目:9,队列中等待执行的任务数目:5,已执行玩别的任务数目:0 19 线程池中线程数目:10,队列中等待执行的任务数目:5,已执行玩别的任务数目:0 20 正在执行task 0 21 正在执行task 10 22 正在执行task 11 23 正在执行task 12 24 正在执行task 13 25 正在执行task 14 26 task 2执行完毕 27 task 3执行完毕 28 正在执行task 5 29 正在执行task 6 30 task 4执行完毕 31 正在执行task 7 32 task 1执行完毕 33 正在执行task 8 34 task 0执行完毕 35 正在执行task 9 36 task 11执行完毕 37 task 10执行完毕 38 task 14执行完毕 39 task 13执行完毕 40 task 12执行完毕 41 task 6执行完毕 42 task 5执行完毕 43 task 8执行完毕 44 task 7执行完毕 45 task 9执行完毕
View Code
来看一下ThreadPoolExecutor:
1 /* 2 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20 * 21 * 22 * 23 */ 24 25 /* 26 * 27 * 28 * 29 * 30 * 31 * Written by Doug Lea with assistance from members of JCP JSR-166 32 * Expert Group and released to the public domain, as explained at 33 * http://creativecommons.org/publicdomain/zero/1.0/ 34 */ 35 36 package java.util.concurrent; 37 import java.util.concurrent.locks.AbstractQueuedSynchronizer; 38 import java.util.concurrent.locks.Condition; 39 import java.util.concurrent.locks.ReentrantLock; 40 import java.util.concurrent.atomic.AtomicInteger; 41 import java.util.*; 42 43 /** 44 * An {@link ExecutorService} that executes each submitted task using 45 * one of possibly several pooled threads, normally configured 46 * using {@link Executors} factory methods. 47 * 48 * <p>Thread pools address two different problems: they usually 49 * provide improved performance when executing large numbers of 50 * asynchronous tasks, due to reduced per-task invocation overhead, 51 * and they provide a means of bounding and managing the resources, 52 * including threads, consumed when executing a collection of tasks. 53 * Each {@code ThreadPoolExecutor} also maintains some basic 54 * statistics, such as the number of completed tasks. 55 * 56 * <p>To be useful across a wide range of contexts, this class 57 * provides many adjustable parameters and extensibility 58 * hooks. However, programmers are urged to use the more convenient 59 * {@link Executors} factory methods {@link 60 * Executors#newCachedThreadPool} (unbounded thread pool, with 61 * automatic thread reclamation), {@link Executors#newFixedThreadPool} 62 * (fixed size thread pool) and {@link 63 * Executors#newSingleThreadExecutor} (single background thread), that 64 * preconfigure settings for the most common usage 65 * scenarios. Otherwise, use the following guide when manually 66 * configuring and tuning this class: 67 * 68 * <dl> 69 * 70 * <dt>Core and maximum pool sizes</dt> 71 * 72 * <dd>A {@code ThreadPoolExecutor} will automatically adjust the 73 * pool size (see {@link #getPoolSize}) 74 * according to the bounds set by 75 * corePoolSize (see {@link #getCorePoolSize}) and 76 * maximumPoolSize (see {@link #getMaximumPoolSize}). 77 * 78 * When a new task is submitted in method {@link #execute(Runnable)}, 79 * and fewer than corePoolSize threads are running, a new thread is 80 * created to handle the request, even if other worker threads are 81 * idle. If there are more than corePoolSize but less than 82 * maximumPoolSize threads running, a new thread will be created only 83 * if the queue is full. By setting corePoolSize and maximumPoolSize 84 * the same, you create a fixed-size thread pool. By setting 85 * maximumPoolSize to an essentially unbounded value such as {@code 86 * Integer.MAX_VALUE}, you allow the pool to accommodate an arbitrary 87 * number of concurrent tasks. Most typically, core and maximum pool 88 * sizes are set only upon construction, but they may also be changed 89 * dynamically using {@link #setCorePoolSize} and {@link 90 * #setMaximumPoolSize}. </dd> 91 * 92 * <dt>On-demand construction</dt> 93 * 94 * <dd>By default, even core threads are initially created and 95 * started only when new tasks arrive, but this can be overridden 96 * dynamically using method {@link #prestartCoreThread} or {@link 97 * #prestartAllCoreThreads}. You probably want to prestart threads if 98 * you construct the pool with a non-empty queue. </dd> 99 * 100 * <dt>Creating new threads</dt> 101 * 102 * <dd>New threads are created using a {@link ThreadFactory}. If not 103 * otherwise specified, a {@link Executors#defaultThreadFactory} is 104 * used, that creates threads to all be in the same {@link 105 * ThreadGroup} and with the same {@code NORM_PRIORITY} priority and 106 * non-daemon status. By supplying a different ThreadFactory, you can 107 * alter the thread\'s name, thread group, priority, daemon status, 108 * etc. If a {@code ThreadFactory} fails to create a thread when asked 109 * by returning null from {@code newThread}, the executor will 110 * continue, but might not be able to execute any tasks. Threads 111 * should possess the "modifyThread" {@code RuntimePermission}. If 112 * worker threads or other threads using the pool do not possess this 113 * permission, service may be degraded: configuration changes may not 114 * take effect in a timely manner, and a shutdown pool may remain in a 115 * state in which termination is possible but not completed.</dd> 116 * 117 * <dt>Keep-alive times</dt> 118 * 119 * <dd>If the pool currently has more than corePoolSize threads, 120 * excess threads will be terminated if they have been idle for more 121 * than the keepAliveTime (see {@link #getKeepAliveTime(TimeUnit)}). 122 * This provides a means of reducing resource consumption when the 123 * pool is not being actively used. If the pool becomes more active 124 * later, new threads will be constructed. This parameter can also be 125 * changed dynamically using method {@link #setKeepAliveTime(long, 126 * TimeUnit)}. Using a value of {@code Long.MAX_VALUE} {@link 127 * TimeUnit#NANOSECONDS} effectively disables idle threads from ever 128 * terminating prior to shut down. By default, the keep-alive policy 129 * applies only when there are more than corePoolSize threads. But 130 * method {@link #allowCoreThreadTimeOut(boolean)} can be used to 131 * apply this time-out policy to core threads as well, so long as the 132 * keepAliveTime value is non-zero. </dd> 133 * 134 * <dt>Queuing</dt> 135 * 136 * <dd>Any {@link BlockingQueue} may be used to transfer and hold 137 * submitted tasks. The use of this queue interacts with pool sizing: 138 * 139 * <ul> 140 * 141 * <li> If fewer than corePoolSize threads are running, the Executor 142 * always prefers adding a new thread 143 * rather than queuing.</li> 144 * 145 * <li> If corePoolSize or more threads are running, the Executor 146 * always prefers queuing a request rather than adding a new 147 * thread.</li> 148 * 149 * <li> If a request cannot be queued, a new thread is created unless 150 * this would exceed maximumPoolSize, in which case, the task will be 151 * rejected.</li> 152 * 153 * </ul> 154 * 155 * There are three general strategies for queuing: 156 * <ol> 157 * 158 * <li> <em> Direct handoffs.</em> A good default choice for a work 159 * queue is a {@link SynchronousQueue} that hands off tasks to threads 160 * without otherwise holding them. Here, an attempt to queue a task 161 * will fail if no threads are immediately available to run it, so a 162 * new thread will be constructed. This policy avoids lockups when 163 * handling sets of requests that might have internal dependencies. 164 * Direct handoffs generally require unbounded maximumPoolSizes to 165 * avoid rejection of new submitted tasks. This in turn admits the 166 * possibility of unbounded thread growth when commands continue to 167 * arrive on average faster than they can be processed. </li> 168 * 169 * <li><em> Unbounded queues.</em> Using an unbounded queue (for 170 * example a {@link LinkedBlockingQueue} without a predefined 171 * capacity) will cause new tasks to wait in the queue when all 172 * corePoolSize threads are busy. Thus, no more than corePoolSize 173 * threads will ever be created. (And the value of the maximumPoolSize 174 * therefore doesn\'t have any effect.) This may be appropriate when 175 * each task is completely independent of others, so tasks cannot 176 * affect each others execution; for example, in a web page server. 177 * While this style of queuing can be useful in smoothing out 178 * transient bursts of requests, it admits the possibility of 179 * unbounded work queue growth when commands continue to arrive on 180 * average faster than they can be processed. </li> 181 * 182 * <li><em>Bounded queues.</em> A bounded queue (for example, an 183 * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when 184 * used with finite maximumPoolSizes, but can be more difficult to 185 * tune and control. Queue sizes and maximum pool sizes may be traded 186 * off for each other: Using large queues and small pools minimizes 187 * CPU usage, OS resources, and context-switching overhead, but can 188 * lead to artificially low throughput. If tasks frequently block (for 189 * example if they are I/O bound), a system may be able to schedule 190 * time for more threads than you otherwise allow. Use of small queues 191 * generally requires larger pool sizes, which keeps CPUs busier but 192 * may encounter unacceptable scheduling overhead, which also 193 * decreases throughput. </li> 194 * 195 * </ol> 196 * 197 * </dd> 198 * 199 * <dt>Rejected tasks</dt> 200 * 201 * <dd>New tasks submitted in method {@link #execute(Runnable)} will be 202 * <em>rejected</em> when the Executor has been shut down, and also when 203 * the Executor uses finite bounds for both maximum threads and work queue 204 * capacity, and is saturated. In either case, the {@code execute} method 205 * invokes the {@link 206 * RejectedExecutionHandler#rejectedExecution(Runnable, ThreadPoolExecutor)} 207 * method of its {@link RejectedExecutionHandler}. Four predefined handler 208 * policies are provided: 209 * 210 * <ol> 211 * 212 * <li> In the default {@link ThreadPoolExecutor.AbortPolicy}, the 213 * handler throws a runtime {@link RejectedExecutionException} upon 214 * rejection. </li> 215 * 216 * <li> In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread 217 * that invokes {@code execute} itself runs the task. This provides a 218 * simple feedback control mechanism that will slow down the rate that 219 * new tasks are submitted. </li> 220 * 221 * <li> In {@link ThreadPoolExecutor.DiscardPolicy}, a task that 222 * cannot be executed is simply dropped. </li> 223 * 224 * <li>In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the 225 * executor is not shut down, the task at the head of the work queue 226 * is dropped, and then execution is retried (which can fail again, 227 * causing this to be repeated.) </li> 228 * 229 * </ol> 230 * 231 * It is possible to define and use other kinds of {@link 232 * RejectedExecutionHandler} classes. Doing so requires some care 233 * especially when policies are designed to work only under particular 234 * capacity or queuing policies. </dd> 235 * 236 * <dt>Hook methods</dt> 237 * 238 * <dd>This class provides {@code protected} overridable 239 * {@link #beforeExecute(Thread, Runnable)} and 240 * {@link #afterExecute(Runnable, Throwable)} methods that are called 241 * before and after execution of each task. These can be used to 242 * manipulate the execution environment; for example, reinitializing 243 * ThreadLocals, gathering statistics, or adding log entries. 244 * Additionally, method {@link #terminated} can be overridden to perform 245 * any special processing that needs to be done once the Executor has 246 * fully terminated. 247 * 248 * <p>If hook or callback methods throw exceptions, internal worker 249 * threads may in turn fail and abruptly terminate.</dd> 250 * 251 * <dt>Queue maintenance</dt> 252 * 253 * <dd>Method {@link #getQueue()} allows access to the work queue 254 * for purposes of monitoring and debugging. Use of this method for 255 * any other purpose is strongly discouraged. Two supplied methods, 256 * {@link #remove(Runnable)} and {@link #purge} are available to 257 * assist in storage reclamation when large numbers of queued tasks 258 * become cancelled.</dd> 259 * 260 * <dt>Finalization</dt> 261 * 262 * <dd>A pool that is no longer referenced in a program <em>AND</em> 263 * has no remaining threads will be {@code shutdown} automatically. If 264 * you would like to ensure that unreferenced pools are reclaimed even 265 * if users forget to call {@link #shutdown}, then you must arrange 266 * that unused threads eventually die, by setting appropriate 267 * keep-alive times, using a lower bound of zero core threads and/or 268 * setting {@link #allowCoreThreadTimeOut(boolean)}. </dd> 269 * 270 * </dl> 271 * 272 * <p><b>Extension example</b>. Most extensions of this class 273 * override one or more of the protected hook methods. For example, 274 * here is a subclass that adds a simple pause/resume feature: 275 * 276 * <pre> {@code 277 * class PausableThreadPoolExecutor extends ThreadPoolExecutor { 278 * private boolean isPaused; 279 * private ReentrantLock pauseLock = new ReentrantLock(); 280 * private Condition unpaused = pauseLock.newCondition(); 281 * 282 * public PausableThreadPoolExecutor(...) { super(...); } 283 * 284 * protected void beforeExecute(Thread t, Runnable r) { 285 * super.beforeExecute(t, r); 286 * pauseLock.lock(); 287 * try { 288 * while (isPaused) unpaused.await(); 289 * } catch (InterruptedException ie) { 290 * t.interrupt(); 291 * } finally { 292 * pauseLock.unlock(); 293 * } 294 * } 295 * 296 * public void pause() { 297 * pauseLock.lock(); 298 * try { 299 * isPaused = true; 300 * } finally { 301 * pauseLock.unlock(); 302 * } 303 * } 304 * 305 * public void resume() { 306 * pauseLock.lock(); 307 * try { 308 * isPaused = false; 309 * unpaused.signalAll(); 310 * } finally { 311 * pauseLock.unlock(); 312 * } 313 * } 314 * }}</pre> 315 * 316 * @since 1.5 317 * @author Doug Lea 318 */ 319 public class ThreadPoolExecutor extends AbstractExecutorService { 320 /** 321 * The main pool control state, ctl, is an atomic integer packing 322 * two conceptual fields 323 * workerCount, indicating the effective number of threads 324 * runState, indicating whether running, shutting down etc 325 * 326 * In order to pack them into one int, we limit workerCount to 327 * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2 328 * billion) otherwise representable. If this is ever an issue in 329 * the future, the variable can be changed to be an AtomicLong, 330 * and the shift/mask constants below adjusted. But until the need 331 * arises, this code is a bit faster and simpler using an int. 332 * 333 * The workerCount is the number of workers that have been 334 * permitted to start and not permitted to stop. The value may be 335 * transiently different from the actual number of live threads, 336 * for example when a ThreadFactory fails to create a thread when 337 * asked, and when exiting threads are still performing 338 * bookkeeping before terminating. The user-visible pool size is 339 * reported as the current size of the workers set. 340 * 341 * The runState provides the main lifecycle control, taking on values: 342 * 343 * RUNNING: Accept new tasks and process queued tasks 344 * SHUTDOWN: Don\'t accept new tasks, but process queued tasks 345 * STOP: Don\'t accept new tasks, don\'t process queued tasks, 346 * and interrupt in-progress tasks 347 * TIDYING: All tasks have terminated, workerCount is zero, 348 * the thread transitioning to state TIDYING 349 * will run the terminated() hook method 350 * TERMINATED: terminated() has completed 351 * 352 * The numerical order among these values matters, to allow 353 * ordered comparisons. The runState monotonically increases over 354 * time, but need not hit each state. The transitions are: 355 * 356 * RUNNING -> SHUTDOWN 357 * On invocation of shutdown(), perhaps implicitly in finalize() 358 * (RUNNING or SHUTDOWN) -> STOP 359 * On invocation of shutdownNow() 360 * SHUTDOWN -> TIDYING 361 * When both queue and pool are empty 362 * STOP -> TIDYING 363 * When pool is empty 364 * TIDYING -> TERMINATED 365 * When the terminated() hook method has completed 366 * 367 * Threads waiting in awaitTermination() will return when the 368 * state reaches TERMINATED. 369 * 370 * Detecting the transition from SHUTDOWN to TIDYING is less 371 * straightforward than you\'d like because the queue may become 372 * empty after non-empty and vice versa during SHUTDOWN state, but 373 * we can only terminate if, after seeing that it is empty, we see 374 * that workerCount is 0 (which sometimes entails a recheck -- see 375 * below). 376 */ 377 private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); 378 private static final int COUNT_BITS = Integer.SIZE - 3; 379 private static final int CAPACITY = (1 << COUNT_BITS) - 1; 380 381 // runState is stored in the high-order bits 382 private static final int RUNNING = -1 << COUNT_BITS; 383 private static final int SHUTDOWN = 0 << COUNT_BITS; 384 private static final int STOP = 1 << COUNT_BITS; 385 private static final int TIDYING = 2 << COUNT_BITS; 386 private static final int TERMINATED = 3 << COUNT_BITS; 387 388 // Packing and unpacking ctl 389 private static int runStateOf(int c) { return c & ~CAPACITY; } 390 private static int workerCountOf(int c) { return c & CAPACITY; } 391 private static int ctlOf(int rs, int wc) { return rs | wc; } 392 393 /* 394 * Bit field accessors that don\'t require unpacking ctl. 395 * These depend on the bit layout and on workerCount being never negative. 396 */ 397 398 private static boolean runStateLessThan(int c, int s) { 399 return c < s; 400 } 401 402 private static boolean runStateAtLeast(int c, int s) { 403 return c >= s; 404 } 405 406 private static boolean isRunning(int c) { 407 return c < SHUTDOWN; 408 } 409 410 /** 411 * Attempts to CAS-increment the workerCount field of ctl. 412 */ 413 private boolean compareAndIncrementWorkerCount(int expect) { 414 return ctl.compareAndSet(expect, expect + 1); 415 } 416 417 /** 418 * Attempts to CAS-decrement the workerCount field of ctl. 419 */ 420 private boolean compareAndDecrementWorkerCount(int expect) { 421 return ctl.compareAndSet(expect, expect - 1); 422 } 423 424 /** 425 * Decrements the workerCount field of ctl. This is called only on 426 * abrupt termination of a thread (see processWorkerExit). Other 427 * decrements are performed within getTask. 428 */ 429 private void decrementWorkerCount() { 430 do {} while (! compareAndDecrementWorkerCount(ctl.get())); 431 } 432 433 /** 434 * The queue used for holding tasks and handing off to worker 435 * threads. We do not require that workQueue.poll() returning 436 * null necessarily means that workQueue.isEmpty(), so rely 437 * solely on isEmpty to see if the queue is empty (which we must 438 * do for example when deciding whether to transition from 439 * SHUTDOWN to TIDYING). This accommodates special-purpose 440 * queues such as DelayQueues for which poll() is allowed to 441 * return null even if it may later return non-null when delays 442 * expire. 443 */ 444 private final BlockingQueue<Runnable> workQueue; 445 446 /** 447 * Lock held on access to workers set and related bookkeeping. 448 * While we could use a concurrent set of some sort, it turns out 449 * to be generally preferable to use a lock. Among the reasons is 450 * that this serializes interruptIdleWorkers, which avoids 451 * unnecessary interrupt storms, especially during shutdown. 452 * Otherwise exiting threads would concurrently interrupt those 453 * that have not yet interrupted. It also simplifies some of the 454 * associated statistics bookkeeping of largestPoolSize etc. We 455 * also hold mainLock on shutdown and shutdownNow, for the sake of 456 * ensuring workers set is stable while separately checking 457 * permission to interrupt and actually interrupting. 458 */ 459 private final ReentrantLock mainLock = new ReentrantLock(); 460 461 /** 462 * Set containing all worker threads in pool. Accessed only when 463 * holding mainLock. 464 */ 465 private final HashSet<Worker> workers = new HashSet<Worker>(); 466 467 /** 468 * Wait condition to support awaitTermination 469 */ 470 private final Condition termination = mainLock.newCondition(); 471 472 /** 473 * Tracks largest attained pool size. Accessed only under 474 * mainLock. 475 */ 476 private int largestPoolSize; 477 478 /** 479 * Counter for completed tasks. Updated only on termination of 480 * worker threads. Accessed only under mainLock. 481 */ 482 private long completedTaskCount; 483 484 /* 485 * All user control parameters are declared as volatiles so that 486 * ongoing actions are based on freshest values, but without need 487 * for locking, since no internal invariants depend on them 488 * changing synchronously with respect to other actions. 489 */ 490 491 /** 492 * Factory for new threads. All threads are created using this 493 * factory (via method addWorker). All callers must be prepared 494 * for addWorker to fail, which may reflect a system or user\'s 495 * policy limiting the number of threads. Even though it is not 496 * treated as an error, failure to create threads may result in 497 * new tasks being rejected or existing ones remaining stuck in 498 * the queue. 499 * 500 * We go further and preserve pool invariants even in the face of 501 * errors such as OutOfMemoryError, that might be thrown while 502 * trying to create threads. Such errors are rather common due to 503 * the need to allocate a native stack in Thread.start, and users 504 * will want to perform clean pool shutdown to clean up. There 505 * will likely be enough memory available for the cleanup code to 506 * complete without encountering yet another OutOfMemoryError. 507 */ 508 private volatile ThreadFactory threadFactory; 509 510 /** 511 * Handler called when saturated or shutdown in execute. 512 */ 513 private volatile RejectedExecutionHandler handler; 514 515 /** 516 * Timeout in nanoseconds for idle threads waiting for work. 517 * Threads use this timeout when there are more than corePoolSize 518 * present or if allowCoreThreadTimeOut. Otherwise they wait 519 * forever for new work. 520 */ 521 private volatile long keepAliveTime; 522 523 /** 524 * If false (default), core threads stay alive even when idle. 525 * If true, core threads use keepAliveTime to time out waiting 526 * for work. 527 */ 528 private volatile boolean allowCoreThreadTimeOut; 529 530 /** 531 * Core pool size is the minimum number of workers to keep alive 532 * (and not allow to time out etc) unless allowCoreThreadTimeOut 533 * is set, in which case the minimum is zero. 534 */ 535 private volatile int corePoolSize; 536 537 /** 538 * Maximum pool size. Note that the actual maximum is internally 539 * bounded by CAPACITY. 540 */ 541 private volatile int maximumPoolSize; 542 543 /** 544 * The default rejected execution handler 545 */ 546 private static final RejectedExecutionHandler defaultHandler = 547 new AbortPolicy(); 548 549 /** 550 * Permission required for callers of shutdown and shutdownNow. 551 * We additionally require (see checkShutdownAccess) that callers 552 * have permission to actually interrupt threads in the worker set 553 * (as governed by Thread.interrupt, which relies on 554 * ThreadGroup.checkAccess, which in turn relies on 555 * SecurityManager.checkAccess). Shutdowns are attempted only if 556 * these checks pass. 557 * 558 * All actual invocations of Thread.interrupt (see 559 * interruptIdleWorkers and interruptWorkers) ignore 560 * SecurityExceptions, meaning that the attempted interrupts 561 * silently fail. In the case of shutdown, they should not fail 562 * unless the SecurityManager has inconsistent policies, sometimes 563 * allowing access to a thread and sometimes not. In such cases, 564 * failure to actually interrupt threads may disable or delay full 565 * termination. Other uses of interruptIdleWorkers are advisory, 566 * and failure to actually interrupt will merely delay response to 567 * configuration changes so is not handled exceptionally. 568 */ 569 private static final RuntimePermission shutdownPerm = 570 new RuntimePermission("modifyThread"); 571 572 /** 573 * Class Worker mainly maintains interrupt control state for 574 * threads running tasks, along with other minor bookkeeping. 575 * This class opportunistically extends AbstractQueuedSynchronizer 576 * to simplify acquiring and releasing a lock surrounding each 577 * task execution. This protects against interrupts that are 578 * intended to wake up a worker thread waiting for a task from 579 * instead interrupting a task being run. We implement a simple 580 * non-reentrant mutual exclusion lock rather than use 581 * ReentrantLock because we do not want worker tasks to be able to 582 * reacquire the lock when they invoke pool control methods like 583 * setCorePoolSize. Additionally, to suppress interrupts until 584 * the thread actually starts running tasks, we initialize lock 585 * state to a negative value, and clear it upon start (in 586 * runWorker). 587 */ 588 private final class Worker 589 extends AbstractQueuedSynchronizer 590 implements Runnable 591 { 592 /** 593 * This class will never be serialized, but we provide a 594 * serialVersionUID to suppress a javac warning. 595 */ 596 private static final long serialVersionUID = 6138294804551838833L; 597 598 /** Thread this worker is running in. Null if factory fails. */ 599 final Thread thread; 600 /** Initial task to run. Possibly null. */ 601 Runnable firstTask; 602 /** Per-thread task counter */ 603 volatile long completedTasks; 604 605 /** 606 * Creates with given first task and thread from ThreadFactory. 607 * @param firstTask the first task (null if none) 608 */ 609 Worker(Runnable firstTask) { 610 setState(-1); // inhibit interrupts until runWorker 611 this.firstTask = firstTask; 612 this.thread = getThreadFactory().newThread(this); 613 } 614 615 /** Delegates main run loop to outer runWorker */ 616 public void run() { 617 runWorker(this); 618 } 619 620 // Lock methods 621 // 622 // The value 0 represents the unlocked state. 623 // The value 1 represents the locked state. 624 625 protected boolean isHeldExclusively() { 626 return getState() != 0; 627 } 628 629 protected boolean tryAcquire(int unused) { 630 if (compareAndSetState(0, 1)) { 631 setExclusiveOwnerThread(Thread.currentThread()); 632 return true; 633 } 634 return false; 635 } 636 637 protected boolean tryRelease(int unused) { 638 setExclusiveOwnerThread(null); 639 setState(0); 640 return true; 641 } 642 643 public void lock() { acquire(1); } 644 public boolean tryLock() { return tryAcquire(1); } 645 public void unlock() { release(1); } 646 public boolean isLocked() { return isHeldExclusively(); } 647 648 void interruptIfStarted() { 649 Thread t; 650 if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) { 651 try { 652 t.interrupt(); 653 } catch (SecurityException ignore) { 654 } 655 } 656 } 657 } 658 659 /* 660 * Methods for setting control state 661 */ 662 663 /** 664 * Transitions runState to given target, or leaves it alone if 665 * already at least the given target. 666 * 667 * @param targetState the desired state, either SHUTDOWN or STOP 668 * (but not TIDYING or TERMINATED -- use tryTerminate for that) 669 */ 670 private void advanceRunState(int targetState) { 671 for (;;) { 672 int c = ctl.get(); 673 if (runStateAtLeast(c, targetState) || 674 ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c)))) 675 break; 676 } 677 } 678 679 /** 680 * Transitions to TERMINATED state if either (SHUTDOWN and pool 681 * and queue empty) or (STOP and pool empty). If otherwise 682 * eligible to terminate but workerCount is nonzero, interrupts an 683 * idle worker to ensure that shutdown signals propagate. This 684 * method must be called following any action that might make 685 * termination possible -- reducing worker count or removing tasks 686 * from the queue during shutdown. The method is non-private to 687 * allow access from ScheduledThreadPoolExecutor. 688 */ 689 final void tryTerminate() { 690 for (;;) { 691 int c = ctl.get(); 692 if (isRunning(c) || 693 runStateAtLeast(c, TIDYING) || 694 (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty())) 695 return; 696 if (workerCountOf(c) != 0) { // Eligible to terminate 697 interruptIdleWorkers(ONLY_ONE); 698 return; 699 } 700 701 final ReentrantLock mainLock = this.mainLock; 702 mainLock.lock(); 703 try { 704 if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) { 705 try { 706 terminated(); 707 } finally { 708 ctl.set(ctlOf(TERMINATED, 0)); 709 termination.signalAll(); 710 } 711 return; 712 } 713 } finally { 714 mainLock.unlock(); 715 } 716 // else retry on failed CAS 717 } 718 } 719 720 /* 721 * Methods for controlling interrupts to worker threads. 722 */ 723 724 /** 725 * If there is a security manager, makes sure caller has 726 * permission to shut down threads in general (see shutdownPerm). 727 * If this passes, additionally makes sure the caller is allowed 728 * to interrupt each worker thread. This might not be true even if 729 * first check passed, if the SecurityManager treats some threads 730 * specially. 731 */ 732 private void checkShutdownAccess() { 733 SecurityManager security = System.getSecurityManager(); 734 if (security != null) { 735 security.checkPermission(shutdownPerm); 736 final ReentrantLock mainLock = this.mainLock; 737 mainLock.lock(); 738 try { 739 for (Worker w : workers) 740 security.checkAccess(w.thread); 741 } finally { 742 mainLock.unlock(); 743 } 744 } 745 } 746 747 /** 748 * Interrupts all threads, even if active. Ignores SecurityExceptions 749 * (in which case some threads may remain uninterrupted). 750 */ 751 private void interruptWorkers() { 752 final ReentrantLock mainLock = this.mainLock; 753 mainLock.lock(); 754 try { 755 for (Worker w : workers) 756 w.interruptIfStarted(); 757 } finally { 758 mainLock.unlock(); 759 } 760 } 761 762 /** 763 * Interrupts threads that might be waiting for tasks (as 764 * indicated by not being locked) so they can check for 765 * termination or configuration changes. Ignores 766 * SecurityExceptions (in which case some threads may remain 767 * uninterrupted). 768 * 769 * @param onlyOne If true, interrupt at most one worker. This is 770 * called only from tryTerminate when termination is otherwise 771 * enabled but there are still other workers. In this case, at 772 * most one waiting worker is interrupted to propagate shutdown 773 * signals in case all threads are currently waiting. 774 * Interrupting any arbitrary thread ensures that newly arriving 775 * workers since shutdown began will also eventually exit. 776 * To guarantee eventual termination, it suffices to always 777 * interrupt only one idle worker, but shutdown() interrupts all 778 * idle workers so that redundant workers exit promptly, not 779 * waiting for a straggler task to finish. 780 */ 781 private void interruptIdleWorkers(boolean onlyOne) { 782 final ReentrantLock mainLock = this.mainLock; 783 mainLock.lock(); 784 try { 785 for (Worker w : workers) { 786 Thread t = w.thread; 787 if (!t.isInterrupted() && w.tryLock()) { 788 try { 789 t.interrupt(); 790 } catch (SecurityException ignore) { 791 } finally { 792 w.unlock(); 793 } 794 } 795 if (onlyOne) 796 break; 797 } 798 } finally { 799 mainLock.unlock(); 800 } 801 } 802 803 /** 804 * Common form of interruptIdleWorkers, to avoid having to 805 * remember what the boolean argument means. 806 */ 807 private void interruptIdleWorkers() { 808 interruptIdleWorkers(false); 809 } 810 811 private static final boolean ONLY_ONE = true; 812 813 /* 814 * Misc utilities, most of which are also exported to 815 * ScheduledThreadPoolExecutor 816 */ 817 818 /** 819 * Invokes the rejected execution handler for the given command. 820 * Package-protected for use by ScheduledThreadPoolExecutor. 821 */ 822 final void reject(Runnable command) { 823 handler.rejectedExecution(command, this); 824 } 825 826 /** 827 * Performs any further cleanup following run state transition on 828 * invocation of shutdown. A no-op here, but used by 829 * ScheduledThreadPoolExecutor to cancel delayed tasks. 830 */ 831 void onShutdown() { 832 } 833 834 /** 835 * State check needed by ScheduledThreadPoolExecutor to 836 * enable running tasks during shutdown. 837 * 838 * @param shutdownOK true if should return true if SHUTDOWN 839 */ 840 final boolean isRunningOrShutdown(boolean shutdownOK) { 841 int rs = runStateOf(ctl.get()); 842 return rs == RUNNING || (rs == SHUTDOWN && shutdownOK); 843 } 844 845 /** 846 * Drains the task queue into a new list, normally using 847 * drainTo. But if the queue is a DelayQueue or any other kind of 848 * queue for which poll or drainTo may fail to remove some 849 * elements, it deletes them one by one. 850 */ 851 private List<Runnable> drainQueue() { 852 BlockingQueue<Runnable> q = workQueue; 853 ArrayList<Runnable> taskList = new ArrayList<Runnable>(); 854 q.drainTo(taskList); 855 if (!q.isEmpty()) { 856 for (Runnable r : q.toArray(new Runnable[0])) { 857 if (q.remove(r)) 858 taskList.add(r); 859 } 860 } 861 return taskList; 862 } 863 864 /* 865 * Methods for creating, running and cleaning up after workers 866 */ 867 868 /** 869 * Checks if a new worker can be added with respect to current 870 * pool state and the given bound (either core or maximum). If so, 871 * the worker count is adjusted accordingly, and, if possible, a 872 * new worker is created and started, running firstTask as its 873 * first task. This method returns false if the pool is stopped or 874 * eligible to shut down. It also returns false if the thread 875 * factory fails to create a thread when asked. If the thread 876 * creation fails, either due to the thread factory returning 877 * null, or due to an exception (typically OutOfMemoryError in 878 * Thread.start()), we roll back cleanly. 879 * 880 * @param firstTask the task the new thread should run first (or 881 * null if none). Workers are created with an initial first task 882 * (in method execute()) to bypass queuing when there are fewer 883 * than corePoolSize threads (in which case we always start one), 884 * or when the queue is full (in which case we must bypass queue). 885 * Initially idle threads are usually created via 886 * prestartCoreThread or to replace other dying workers. 887 * 888 * @param core if true use corePoolSize as bound, else 889 * maximumPoolSize. (A boolean indicator is used here rather than a 890 * value to ensure reads of fresh values after checking other pool 891 * state). 892 * @return true if successful 893 */ 894 private boolean addWorker(Runnable firstTask, boolean core) { 895 retry: 896 for (;;) { 897 int c = ctl.get(); 898 int rs = runStateOf(c); 899 900 // Check if queue empty only if necessary. 901 if (rs >= SHUTDOWN && 902 ! (rs == SHUTDOWN && 903 firstTask == null && 904 ! workQueue.isEmpty())) 905 return false; 906 907 for (;;) { 908 int wc = workerCountOf(c); 909 if (wc >= CAPACITY || 910 wc >= (core ? corePoolSize : maximumPoolSize)) 911 return false; 912 if (compareAndIncrementWorkerCount(c)) 913 break retry; 914 c = ctl.get(); // Re-read ctl 915 if (runStateOf(c) != rs) 916 continue retry; 917 // else CAS failed due to workerCount change; retry inner loop 918 } 919 } 920 921 boolean workerStarted = false; 922 boolean workerAdded = false; 923 Worker w = null; 924 try { 925 w = new Worker(firstTask); 926 final Thread t = w.thread; 927 if (t != null) { 928 final ReentrantLock mainLock = this.mainLock; 929 mainLock.lock(); 930 try { 931 // Recheck while holding lock. 932 // Back out on ThreadFactory failure or if 933 // shut down before lock acquired. 934 int rs = runStateOf(ctl.get()); 935 936 if (rs < SHUTDOWN || 937 (rs == SHUTDOWN && firstTask == null)) { 938 if (t.isAlive()) // precheck that t is startable 939 throw new IllegalThreadStateException(); 940 workers.add(w); 941 int s = workers.size(); 942 if (s > largestPoolSize) 943 largestPoolSize = s; 944 workerAdded = true; 945 } 946 } finally { 947 mainLock.unlock(); 948 } 949 if (workerAdded) { 950 t.start(); 951 workerStarted = true; 952 } 953 } 954 } finally { 955 if (! workerStarted) 956 addWorkerFailed(w); 957 } 958 return workerStarted; 959 } 960 961 /** 962 * Rolls back the worker thread creation. 963 * - removes worker from workers, if present 964 * - decrements worker count 965 * - rechecks for termination, in case the existence of this 966 * worker was holding up termination 967 */ 968 private void addWorkerFailed(Worker w) { 969 final ReentrantLock mainLock = this.mainLock; 970 mainLock.lock(); 971 try { 972 if (w != null) 973 workers.remove(w); 974 decrementWorkerCount(); 975 tryTerminate(); 976 } finally { 977 mainLock.unlock(); 978 } 979 } 980 981 /** 982 * Performs cleanup and bookkeeping for a dying worker. Called 983 * only from worker threads. Unless completedAbruptly is set, 984 * assumes that workerCount has already been adjusted to account 985 * for exit. This method removes thread from worker set, and 986 * possibly terminates the pool or replaces the worker if either 987 * it exited due to user task exception or if fewer than 988 * corePoolSize workers are running or queue is non-empty but 989 * there are no workers. 990 * 991 * @param w the worker 992 * @param completedAbruptly if the worker died due to user exception 993 */ 994 private void processWorkerExit(Worker w, boolean completedAbruptly) { 995 if (completedAbruptly) // If abrupt, then workerCount wasn\'t adjusted 996 decrementWorkerCount(); 997 998 final ReentrantLock mainLock = this.mainLock; 999 mainLock.lock(); 1000 try { 1001 completedTaskCount += w.completedTasks; 1002 workers.remove(w); 1003 } finally { 1004 mainLock.unlock(); 1005 } 1006 1007 tryTerminate(); 1008 1009 int c = ctl.get(); 1010 if (runStateLessThan(c, STOP)) { 1011 if (!completedAbruptly) { 1012 int min = allowCoreThreadTimeOut ? 0 : corePoolSize; 1013 if (min == 0 && ! workQueue.isEmpty()) 1014 min = 1; 1015 if (workerCountOf(c) >= min) 1016 return; // replacement not needed 1017 } 1018 addWorker(null, false); 1019 } 1020 } 1021 1022 /** 1023 * Performs blocking or timed wait for a task, depending on 1024 * current configuration settings, or returns null if this worker 1025 * must exit because of any of: 1026 * 1. There are more than maximumPoolSize workers (due to 1027 * a call to setMaximumPoolSize). 1028 * 2. The pool is stopped. 1029 * 3. The pool is shutdown and the queue is empty. 1030 * 4. This worker timed out waiting for a task, and timed-out 1031 * workers are subject to termination (that is, 1032 * {@code allowCoreThreadTimeOut || workerCount > corePoolSize}) 1033 * both before and after the timed wait, and if the queue is 1034 * non-empty, this worker is not the last thread in the pool. 1035 * 1036 * @return task, or null if the worker must exit, in which case 1037 * workerCount is decremented 1038 */ 1039 private Runnable getTask() { 1040 boolean timedOut = false; // Did the last poll() time out? 1041 1042 for (;;) { 1043 int c = ctl.get(); 1044 int rs = runStateOf(c); 1045 1046 // Check if queue empty only if necessary. 1047 if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { 1048 decrementWorkerCount(); 1049 return null; 1050 } 1051 1052 int wc = workerCountOf(c); 1053 1054 // Are workers subject to culling? 1055 boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; 1056 1057 if ((wc > maximumPoolSize || (timed && timedOut)) 1058 && (wc > 1 || workQueue.isEmpty())) { 1059 if (compareAndDecrementWorkerCount(c)) 1060 return null; 1061 continue; 1062 } 1063 1064 try { 1065 Runnable r = timed ? 1066 workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : 1067 workQueue.take(); 1068 if (r != null) 1069 return r; 1070 timedOut = true; 1071 } catch (InterruptedException retry) { 1072 timedOut = false; 1073 } 1074 } 1075 } 1076 1077 /** 1078 * Main worker run loop. Repeatedly gets tasks from queue and 1079 * executes them, while coping with a number of issues: 1080 * 1081 * 1. We may start out with an initial task, in which case we 1082 * don\'t need to get the first one. Otherwise, as long as pool is 1083 * running, we get tasks from getTask. If it returns null then the 1084 * worker exits due to changed pool state or configuration 1085 * parameters. Other exits result from exception throws in 1086 * external code, in which case completedAbruptly holds, which 1087 * usually leads processWorkerExit to replace this thread. 1088 * 1089 * 2. Before running any task, the lock is acquired to prevent 1090 * other pool interrupts while the task is executing, and then we 1091 * ensure that unless pool is stopping, this thread does not have 1092 * its interrupt set. 1093 * 1094 * 3. Each task run is preceded by a call to beforeExecute, which 1095 * might throw an exception, in which case we cause thread to die 1096 * (breaking loop with completedAbruptly true) without processing 1097 * the task. 1098 * 1099 * 4. Assuming beforeExecute completes normally, we run the task, 1100 * gathering any of its thrown exceptions to send to afterExecute. 1101 * We separately handle RuntimeException, Error (both of which the 1102 * specs guarantee that we trap) and arbitrary Throwables. 1103 * Because we cannot rethrow Throwables within Runnable.run, we 1104 * wrap them within Errors on the way out (to the thread\'s 1105 * UncaughtExceptionHandler). Any thrown exception also 1106 * conservatively causes thread to die. 1107 * 1108 * 5. After task.run completes, we call afterExecute, which may 1109 * also throw an exception, which will also cause thread to 1110 * die. According to JLS Sec 14.20, this exception is the one that 1111 * will be in effect even if task.run throws. 1112 * 1113 * The net effect of the exception mechanics is that afterExecute 1114 * and the thread\'s UncaughtExceptionHandler have as accurate 1115 * information as we can provide about any problems encountered by 1116 * user code. 1117 * 1118 * @param w the worker 1119 */ 1120 final void runWorker(Worker w) { 1121 Thread wt = Thread.currentThread(); 1122 Runnable task = w.firstTask; 1123 w.firstTask = null; 1124 w.unlock(); // allow interrupts 1125 boolean completedAbruptly = true; 1126 try { 1127 while (task != null || (task = getTask()) != null) { 1128 w.lock(); 1129 // If pool is stopping, ensure thread is interrupted; 1130 // if not, ensure thread is not interrupted. This 1131 // requires a recheck in second case to deal with 1132 // shutdownNow race while clearing interrupt 1133 if ((runStateAtLeast(ctl.get(), STOP) || 1134 (Thread.interrupted() && 1135 runStateAtLeast(ctl.get(), STOP))) && 1136 !wt.isInterrupted()) 1137 wt.interrupt(); 1138 try { 1139 beforeExecute(wt, task); 1140 Throwable thrown = null; 1141 try { 1142 task.run(); 1143 } catch (RuntimeException x) { 1144 thrown = x; throw x; 1145 } catch (Error x) { 1146 thrown = x; throw x; 1147 } catch (Throwable x) { 1148 thrown = x; throw new Error(x); 1149 } finally { 1150 afterExecute(task, thrown); 1151 } 1152 } finally { 1153 task = null; 1154 w.completedTasks++; 1155 w.unlock(); 1156 } 1157 } 1158 completedAbruptly = false; 1159 } finally { 1160 processWorkerExit(w, completedAbruptly); 1161 } 1162 } 1163 1164 // Public constructors and methods 1165 1166 /** 1167 * Creates a new {@code ThreadPoolExecutor} with the given initial 1168 * parameters and default thread factory and rejected execution handler. 1169 * It may be more convenient to use one of the {@link Executors} factory 1170 * methods instead of this general purpose constructor. 1171 * 1172 * @param corePoolSize the number of threads to keep in the pool, even 1173 * if they are idle, unless {@code allowCoreThreadTimeOut} is set 1174 * @param maximumPoolSize the maximum number of threads to allow in the 1175 * pool 1176 * @param keepAliveTime when the number of threads is greater than 1177 * the core, this is the maximum time that excess idle threads 1178 * will wait for new tasks before terminating. 1179 * @param unit the time unit for the {@code keepAliveTime} argument 1180 * @param workQueue the queue to use for holding tasks before they are 1181 * executed. This queue will hold only the {@code Runnable} 1182 * tasks submitted by the {@code execute} method. 1183 * @throws IllegalArgumentException if one of the following holds:<br> 1184 * {@code corePoolSize < 0}<br> 1185 * {@code keepAliveTime < 0}<br> 1186 * {@code maximumPoolSize <= 0}<br> 1187 * {@code maximumPoolSize < corePoolSize} 1188 * @throws NullPointerException if {@code workQueue} is null 1189 */ 1190 public ThreadPoolExecutor(int corePoolSize, 1191 int maximumPoolSize, 1192 long keepAliveTime, 1193 TimeUnit unit, 1194 BlockingQueue<Runnable> workQueue) { 1195 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, 1196 Executors.defaultThreadFactory(), defaultHandler); 1197 } 1198 1199 /** 1200 * Creates a new {@code ThreadPoolExecutor} with the given initial 1201 * parameters and default rejected execution handler. 1202 * 1203 * @param corePoolSize the number of threads to keep in the pool, even 1204 * if they are idle, unless {@code allowCoreThreadTimeOut} is set 1205 * @param maximumPoolSize the maximum number of threads to allow in the 1206 * pool 1207 * @param keepAliveTime when the number of threads is greater than 1208 * the core, this is the maximum time that excess idle threads 1209 * will wait for new tasks before terminating. 1210 * @param unit the time unit for the {@code keepAliveTime} argument 1211 * @param workQueue the queue to use for holding tasks before they are 1212 * executed. This queue will hold only the {@code Runnable} 1213 * tasks submitted by the {@code execute} method. 1214 * @param threadFactory the factory to use when the executor 1215 * creates a new thread 1216 * @throws IllegalArgumentException if one of the following holds:<br> 1217 * {@code corePoolSize < 0}<br> 1218 * {@code keepAliveTime < 0}<br> 1219 * {@code maximumPoolSize <= 0}<br> 1220 * {@code maximumPoolSize < corePoolSize} 1221 * @throws NullPointerException if {@code workQueue} 1222 * or {@code threadFactory} is null 1223 */ 1224 public ThreadPoolExecutor(int corePoolSize, 1225 int maximumPoolSize, 1226 long keepAliveTime, 1227 TimeUnit unit, 1228 BlockingQueue<Runnable> workQueue, 1229 ThreadFactory threadFactory) { 1230 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, 1231 threadFactory, defaultHandler); 1232 } 1233 1234 /** 1235 * Creates a new {@code ThreadPoolExecutor} with the given initial 1236 * parameters and default thread factory. 1237 * 1238 * @param corePoolSize the number of threads to keep in the pool, even 1239 * if they are idle, unless {@code allowCoreThreadTimeOut} is set 1240 * @param maximumPoolSize the maximum number of threads to allow in the 1241 * pool 1242 * @param keepAliveTime when the number of threads is greater than 1243 * the core, this is the maximum time that excess idle threads 1244 * will wait for new tasks before terminating. 1245 * @param unit the time unit for the {@code keepAliveTime} argument 1246 * @param workQueue the queue to use for holding tasks before they are 1247 * executed. This queue will hold only the {@code Runnable} 1248 * tasks submitted by the {@code execute} method. 1249 * @param handler the handler to use when execution is blocked 1250 * because the thread bounds and queue capacities are reached 1251 * @throws IllegalArgumentException if one of the following holds:<br> 1252 * {@code corePoolSize < 0}<br> 1253 * {@code keepAliveTime < 0}<br> 1254 * {@code maximumPoolSize <= 0}<br> 1255 * {@code maximumPoolSize < corePoolSize} 1256 * @throws NullPointerException if {@code workQueue} 1257 * or {@code handler} is null 1258 */ 1259 public ThreadPoolExecutor(int corePoolSize, 1260 int maximumPoolSize, 1261 long keepAliveTime, 1262 TimeUnit unit, 1263 BlockingQueue<Runnable> workQueue, 1264 RejectedExecutionHandler handler) { 1265 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, 1266 Executors.defaultThreadFactory(), handler); 1267 } 1268 1269 /** 1270 * Creates a new {@code ThreadPoolExecutor} with the given initial 1271 * parameters. 1272 * 1273 * @param corePoolSize the number of threads to keep in the pool, even 1274 * if they are idle, unless {@code allowCoreThreadTimeOut} is set 1275 * @param maximumPoolSize the maximum number of threads to allow in the 1276 * pool 1277 * @param keepAliveTime when the number of threads is greater than 1278 * the core, this is the maximum time that excess idle threads 1279 * will wait for new tasks before terminating. 1280 * @param unit the time unit for the {@code keepAliveTime} argument 1281 * @param workQueue the queue to use for holding tasks before they are 1282 * executed. This queue will hold only the {@code Runnable} 1283 * tasks submitted by the {@code execute} method. 1284 * @param threadFactory the factory to use when the executor 1285 * creates a new thread 1286 * @param handler the handler to use when execution is blocked 1287 * because the thread bounds and queue capacities are reached 1288 * @throws IllegalArgumentException if one of the following holds:<br> 1289 * {@code corePoolSize < 0}<br> 1290 * {@code keepAliveTime < 0}<br> 1291 * {@code maximumPoolSize <= 0}<br> 1292 * {@code maximumPoolSize < corePoolSize} 1293 * @throws NullPointerException if {@code workQueue} 1294 * or {@code threadFactory} or {@code handler} is null 1295 */ 1296 public ThreadPoolExecutor(int corePoolSize, 1297 int maximumPoolSize, 1298 long keepAliveTime, 1299 TimeUnit unit, 1300 BlockingQueue<Runnable> workQueue, 1301 ThreadFactory threadFactory, 1302 RejectedExecutionHandler handler) { 1303 if (corePoolSize < 0 || 1304 maximumPoolSize <= 0 || 1305 maximumPoolSize < corePoolSize || 1306 keepAliveTime < 0) 1307 throw new IllegalArgumentException(); 1308 if (workQueue == null || threadFactory == null || handler == null) 1309 throw new NullPointerException(); 1310 this.corePoolSize = corePoolSize; 1311 this.maximumPoolSize = maximumPoolSize; 1312 this.workQueue = workQueue; 1313 this.keepAliveTime = unit.toNanos(keepAliveTime); 1314 this.threadFactory = threadFactory; 1315 this.handler = handler; 1316 } 1317 1318 /** 1319 * Executes the given task sometime in the future. The task 1320 * may execute in a new thread or in an existing pooled thread. 1321 * 1322 * If the task cannot be submitted for execution, either because this 1323 * executor has been shutdown or because its capacity has been reached, 1324 * the task is handled by the current {@code RejectedExecutionHandler}. 1325 * 1326 * @param command the task to execute 1327 * @throws RejectedExecutionException at discretion of 1328 * {@code RejectedExecutionHandler}, if the task 1329 * cannot be accepted for execution 1330 * @throws NullPointerException if {@code command} is null 1331 */ 1332 public void execute(Runnable command) { 1333 if (command == null) 1334 throw new NullPointerException(); 1335 /* 1336 * Proceed in 3 steps: 1337 * 1338 * 1. If fewer than corePoolSize threads are running, try to 1339 * start a new thread with the given command as its first 1340 * task. The call to addWorker atomically checks runState and 1341 * workerCount, and so prevents false alarms that would add 1342 * threads when it shouldn\'t, by returning false. 1343 * 1344 * 2. If a task can be successfully queued, then we still need 1345 * to double-check whether we should have added a thread 1346 * (because existing ones died since last checking) or that 1347 * the pool shut down since entry into this method. So we 1348 * recheck state and if necessary roll back the enqueuing if 1349 * stopped, or start a new thread if there are none. 1350 * 1351 * 3. If we cannot queue task, then we try to add a new 1352 * thread. If it fails, we know we are shut down or saturated 1353 * and so reject the task. 1354 */ 1355 int c = ctl.get(); 1356 if (workerCountOf(c) < corePoolSize) { 1357 if (addWorker(command, true)) 1358 return; 1359 c = ctl.get(); 1360 } 1361 if (isRunning(c) && workQueue.offer(command)) { 1362 int recheck = ctl.get(); 1363 if (! isRunning(recheck) && remove(command)) 1364 reject(command); 1365 else if (workerCountOf(recheck) == 0) 1366 addWorker(null, false); 1367 } 1368 else if (!addWorker(command, false)) 1369 reject(command); 1370 } 1371 1372 /** 1373 * Initiates an orderly shutdown in which previously submitted 1374 * tasks are executed, but no new tasks will be accepted. 1375 * Invocation has no additional effect if already shut down. 1376 * 1377 * <p>This method does not wait for previously submitted tasks to 1378 * complete execution. Use {@link #awaitTermination awaitTermination} 1379 * to do that. 1380 * 1381 * @throws SecurityException {@inheritDoc} 1382 */ 1383 public void shutdown() { 1384 final ReentrantLock mainLock = this.mainLock; 1385 mainLock.lock(); 1386 try { 1387 checkShutdownAccess(); 1388 advanceRunState(SHUTDOWN); 1389 interruptIdleWorkers(); 1390 onShutdown(); // hook for ScheduledThreadPoolExecutor 1391 } finally { 1392 mainLock.unlock(); 1393 } 1394 tryTerminate(); 1395 } 1396 1397 /** 1398 * Attempts to stop all actively executing tasks, halts the 1399 * processing of waiting tasks, and returns a list of the tasks 1400 * that were awaiting execution. These tasks are drained (removed) 1401 * from the task queue upon return from this method. 1402 * 1403 * <p>This method does not wait for actively executing tasks to 1404 * terminate. Use {@link #awaitTermination awaitTermination} to 1405 * do that. 1406 * 1407 * <p>There are no guarantees beyond best-effort attempts to stop 1408 * processing actively executing tasks. This implementation 1409 * cancels tasks via {@link Thread#interrupt}, so any task that 1410 * fails to respond to interrupts may never terminate. 1411 * 1412 * @throws SecurityException {@inheritDoc} 1413 */ 1414 public List<Runnable> shutdownNow() { 1415 List<Runnable> tasks; 1416 final ReentrantLock mainLock = this.mainLock; 1417 mainLock.lock(); 1418 try { 1419 checkShutdownAccess(); 1420 advanceRunState(STOP); 1421 interruptWorkers(); 1422 tasks = drainQueue(); 1423 } finally { 1424 mainLock.unlock(); 1425 } 1426 tryTerminate(); 1427 return tasks; 1428 } 1429 1430 public boolean isShutdown() { 1431 return ! isRunning(ctl.get()); 1432 } 1433 1434 /** 1435 * Returns true if this executor is in the process of terminating 1436 * after {@link #shutdown} or {@link #shutdownNow} but has not 1437 * completely terminated. This method may be useful for 1438 * debugging. A return of {@code true} reported a sufficient 1439 * period after shutdown may indicate that submitted tasks have 1440 * ignored or suppressed interruption, causing this executor not 1441 * to properly terminate. 1442 * 1443 * @return {@code true} if terminating but not yet terminated 1444 */ 1445 public boolean isTerminating() { 1446 int c = ctl.get(); 1447 return ! isRunning(c) && runStateLessThan(c, TERMINATED); 1448 } 1449 1450 public boolean isTerminated() { 1451 return runStateAtLeast(ctl.get(), TERMINATED); 1452 } 1453 1454 public boolean awaitTermination(long timeout, TimeUnit unit) 1455 throws InterruptedException { 1456 long nanos = unit.toNanos(timeout); 1457 final ReentrantLock mainLock = this.mainLock; 1458 mainLock.lock(); 1459 try { 1460 for (;;) { 1461 if (runStateAtLeast(ctl.get(), TERMINATED)) 1462 return true; 1463 if (nanos <= 0) 1464 return false; 1465 nanos = termination.awaitNanos(nanos); 1466 } 1467 } finally { 1468 mainLock.unlock(); 1469 } 1470 } 1471 1472 /** 1473 * Invokes {@code shutdown} when this executor is no longer 1474 * referenced and it has no threads. 1475 */ 1476 protected void finalize() { 1477 shutdown(); 1478 } 1479 1480 /** 1481 * Sets the thread factory used to create new threads. 1482 * 1483 * @param threadFactory the new thread factory 1484 * @throws NullPointerException if threadFactory is null 1485 * @see #getThreadFactory 1486 */ 1487 public void setThreadFactory(ThreadFactory threadFactory) { 1488 if (threadFactory == null) 1489 throw new NullPointerException(); 1490 this.threadFactory = threadFactory; 1491 } 1492 1493 /** 1494 * Returns the thread factory used to create new threads. 1495 * 1496 * @return the current thread factory 1497 * @see #setThreadFactory(ThreadFactory) 1498 */ 1499 public ThreadFactory getThreadFactory() { 1500 return threadFactory; 1501 } 1502 1503 /** 1504 * Sets a new handler for unexecutable tasks. 1505 * 1506 * @param handler the new handler 1507 * @throws NullPointerException if handler is null 1508 * @see #getRejectedExecutionHandler 1509 */ 1510 public void setRejectedExecutionHandler(RejectedExecutionHandler handler) { 1511 if (handler == null) 1512 throw new NullPointerException(); 1513 this.handler = handler; 1514 } 1515 1516 /** 1517 * Returns the current handler for unexecutable tasks. 1518 * 1519 * @return the current handler 1520 * @see #setRejectedExecutionHandler(RejectedExecutionHandler) 1521 */ 1522 public RejectedExecutionHandler getRejectedExecutionHandler() { 1523 return handler; 1524 } 1525 1526 /** 1527 * Sets the core number of threads. This overrides any value set 1528 * in the constructor. If the new value is smaller than the 1529 * current value, excess existing threads will be terminated when 1530 * they next become idle. If larger, new threads will, if needed, 1531 * be started to execute any queued tasks. 1532 * 1533 * @param corePoolSize the new core size 1534 * @throws IllegalArgumentException if {@code corePoolSize < 0} 1535 * @see #getCorePoolSize 1536 */ 1537 public void setCorePoolSize(int corePoolSize) { 1538 if (corePoolSize < 0) 1539 throw new IllegalArgumentException(); 1540 int delta = corePoolSize - this.corePoolSize; 1541 this.corePoolSize = corePoolSize; 1542 if (workerCountOf(ctl.get()) > corePoolSize) 1543 interruptIdleWorkers(); 1544 else if (delta > 0) { 1545 // We don\'t really know how many new threads are "needed". 1546 // As a heuristic, prestart enough new workers (up to new 1547 // core size) to handle the current number of tasks in 1548 // queue, but stop if queue becomes empty while doing so. 1549 int k = Math.min(delta, workQueue.size()); 1550 while (k-- > 0 && addWorker(null, true)) { 1551 if (workQueue.isEmpty()) 1552 break; 1553 } 1554 } 1555 } 1556 1557 /** 1558 * Returns the core number of threads. 1559 * 1560 * @return the core number of threads 1561 * @see #setCorePoolSize 1562 */ 1563 public int getCorePoolSize() { 1564 return corePoolSize; 1565 } 1566 1567 /** 1568 * Starts a core thread, causing it to idly wait for work. This 1569 * overrides the default policy of starting core threads only when 1570 * new tasks are executed. This method will return {@code false} 1571 * if all core threads have already been started. 1572 * 1573 * @return {@code true} if a thread was started 1574 */ 1575 public boolean prestartCoreThread() { 1576 return workerCountOf(ctl.get()) < corePoolSize && 1577 addWorker(null, true); 1578 } 1579 1580 /** 1581 * Same as prestartCoreThread except arranges that at least one 1582 * thread is started even if corePoolSize is 0. 1583 */ 1584 void ensurePrestart() { 1585 int wc = workerCountOf(ctl.get()); 1586 if (wc < corePoolSize) 1587 addWorker(null, true); 1588 else if (wc == 0) 1589 addWorker(null, false); 1590 } 1591 1592 /** 1593 * Starts all core threads, causing them to idly wait for work. This 1594 * overrides the default policy of starting core threads only when 1595 * new tasks are executed. 1596 * 1597 * @return the number of threads started 1598 */ 1599 public int prestartAllCoreThreads() { 1600 int n = 0; 1601 while (addWorker(null, true)) 1602 ++n; 1603 return n; 1604 } 1605 1606 /** 1607 * Returns true if this pool allows core threads to time out and 1608 * terminate if no tasks arrive within the keepAlive time, being 1609 * replaced if needed when new tasks arrive. When true, the same 1610 * keep-alive policy applying to non-core threads applies also to 1611 * core threads. When false (the default), core threads are never 1612 * terminated due to lack of incoming tasks. 1613 * 1614 * @return {@code true} if core threads are allowed to time out, 1615 * else {@code false} 1616 * 1617 * @since 1.6 1618 */ 1619 public boolean allowsCoreThreadTimeOut() { 1620 return allowCoreThreadTimeOut; 1621 } 1622 1623 /** 1624 * Sets the policy governing whether core threads may time out and 1625 * terminate if no tasks arrive within the keep-alive time, being 1626 * replaced if needed when new tasks arrive. When false, core 1627 * threads are never terminated due to lack of incoming 1628 * tasks. When true, the same keep-alive policy applying to 1629 * non-core threads applies also to core threads. To avoid 1630 * continual thread replacement, the keep-alive time must be 1631 * greater than zero when setting {@code true}. This method 1632 * should in general be called before the pool is actively used. 1633 * 1634 * @param value {@code true} if should time out, else {@code false} 1635 * @throws IllegalArgumentException if value is {@code true} 1636 * and the current keep-alive time is not greater than zero 1637 * 1638 * @since 1.6 1639 */ 1640 public void allowCoreThreadTimeOut(boolean value) { 1641 if (value && keepAliveTime <= 0) 1642 throw new IllegalArgumentException("Core threads must have nonzero keep alive times"); 1643 if (value != allowCoreThreadTimeOut) { 1644 allowCoreThreadTimeOut = value; 1645 if (value) 1646 interruptIdleWorkers(); 1647 } 1648 } 1649 1650 /** 1651 * Sets the maximum allowed number of threads. This overrides any 1652 * value set in the constructor. If the new value is smaller than 1653 * the current value, excess existing threads will be 1654 * terminated when they next become idle. 1655 * 1656 * @param maximumPoolSize the new maximum 1657 * @throws IllegalArgumentException if the new maximum is 1658 * less than or equal to zero, or 1659 * less than the {@linkplain #getCorePoolSize core pool size} 1660 * @see #getMaximumPoolSize 1661 */ 1662 public void setMaximumPoolSize(int maximumPoolSize) { 1663 if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize) 1664 throw new IllegalArgumentException(); 1665 this.maximumPoolSize = maximumPoolSize; 1666 if (workerCountOf(ctl.get()) > maximumPoolSize) 1667 interruptIdleWorkers(); 1668 } 1669 1670 /** 1671 * Returns the maximum allowed number of threads. 1672 * 1673 * @return the maximum allowed number of threads 1674 * @see #setMaximumPoolSize 1675 */ 1676 public int getMaximumPoolSize() { 1677 return maximumPoolSize; 1678 } 1679 1680 /** 1681 * Sets the time limit for which threads may remain idle before 1682 * being terminated. If there are more than the core number of 1683 * threads currently in the pool, after waiting this amount of 1684 * time without processing a task, excess threads will be 1685 * terminated. This overrides any value set in the constructor. 1686 * 1687 * @param time the time to wait. A time value of zero will cause 1688 * excess threads to terminate immediately after executing tasks. 1689 * @param unit the time unit of the {@code time} argument 1690 * @throws IllegalArgumentException if {@code time} less than zero or 1691 * if {@code time} is zero and {@code allowsCoreThreadTimeOut} 1692 * @see #getKeepAliveTime(TimeUnit) 1693 */ 1694 public void setKeepAliveTime(long time, TimeUnit unit) { 1695 if (time < 0) 1696 throw new IllegalArgumentException(); 1697 if (time == 0 && allowsCoreThreadTimeOut()) 1698 throw new IllegalArgumentException("Core threads must have nonzero keep alive times"); 1699 long keepAliveTime = unit.toNanos(time); 1700 long delta = keepAliveTime - this.keepAliveTime; 1701 this.keepAliveTime = keepAliveTime; 1702 if (delta < 0) 1703 interruptIdleWorkers(); 1704 } 1705 1706 /** 1707 * Returns the thread keep-alive time, which is the amount of time 1708 * that threads in excess of the core pool size may remain 1709 * idle before being terminated. 1710 * 1711 * @param unit the desired time unit of the result 1712 * @return the time limit 1713 * @see #setKeepAliveTime(long, TimeUnit) 1714 */ 1715 public long getKeepAliveTime(TimeUnit unit) { 1716 return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS); 1717 } 1718 1719 /* User-level queue utilities */ 1720 1721 /** 1722 * Returns the task queue used by this executor. Access to the 1723 * task queue is intended primarily for debugging and monitoring. 1724 * This queue may be in active use. Retrieving the task queue 1725 * does not prevent queued tasks from executing. 1726 * 1727 * @return the task queue 1728 */ 1729 public BlockingQueue<Runnable> getQueue() { 1730 return workQueue; 1731 } 1732 1733 /** 1734 * Removes this task from the executor\'s internal queue if it is 1735 * present, thus causing it not to be run if it has not already 1736 * started. 1737 * 1738 * <p>This method may be useful as one part of a cancellation 1739 * scheme. It may fail to remove tasks that have been converted 1740 * into other forms before being placed on the internal queue. For 1741 * example, a task entered using {@code submit} might be 1742 * converted into a form that maintains {@code Future} status. 1743 * However, in such cases, method {@link #purge} may be used to 1744 * remove those Futures that have been cancelled. 1745 * 1746 * @param task the task to remove 1747 * @return {@code true} if the task was removed 1748 */ 1749 public boolean remove(Runnable task) { 1750 boolean removed = workQueue.remove(task); 1751 tryTerminate(); // In case SHUTDOWN and now empty 1752 return removed; 1753 } 1754 1755 /** 1756 * Tries to remove from the work queue all {@link Future} 1757 * tasks that have been cancelled. This method can be useful as a 1758 * storage reclamation operation, that has no other impact on 1759 * functionality. Cancelled tasks are never executed, but may 1760 * accumulate in work queues until worker threads can actively 1761 * remove them. Invoking this method instead tries to remove them now. 1762 * However, this method may fail to remove tasks in 1763 * the presence of interference by other threads. 1764 */ 1765 public void purge() { 1766 final BlockingQueue<Runnable> q = workQueue; 1767 try { 1768 Iterator<Runnable> it = q.iterator(); 1769 while (it.hasNext()) { 1770 Runnable r = it.next(); 1771 if (r instanceof Future<?> && ((Future<?>)r).isCancelled()) 1772 it.remove(); 1773 } 1774 } catch (ConcurrentModificationException fallThrough) { 1775 // Take slow path if we encounter interference during traversal. 1776 // Make copy for traversal and call remove for cancelled entries. 1777 // The slow path is more likely to be O(N*N). 1778 for (Object r : q.toArray()) 1779 if (r instanceof Future<?> && ((Future<?>)r).isCancelled()) 1780 q.remove(r); 1781 } 1782 1783 tryTerminate(); // In case SHUTDOWN and now empty 1784 } 1785 1786 /* Statistics */ 1787 1788 /** 1789 * Returns the current number of threads in the pool. 1790 * 1791 * @return the number of threads 1792 */ 1793 public int getPoolSize() { 1794 final ReentrantLock mainLock = this.mainLock; 1795 mainLock.lock(); 1796 try { 1797 // Remove rare and surprising possibility of 1798 // isTerminated() && getPoolSize() > 0 1799 return runStateAtLeast(ctl.get(), TIDYING) ? 0 1800 : workers.size(); 1801 } finally { 1802 mainLock.unlock(); 1803 } 1804 } 1805 1806 /** 1807 * Returns the approximate number of threads that are actively 1808 * executing tasks. 1809 * 1810 * @return the number of threads 1811 */ 1812 public int getActiveCount() { 1813 final ReentrantLock mainLock = this.mainLock; 1814 mainLock.lock(); 1815 try { 1816 int n = 0; 1817 for (Worker w : workers) 1818 if (w.isLocked()) 1819 ++n; 1820 return n; 1821 } finally { 1822 mainLock.unlock(); 1823 } 1824 } 1825 1826 /** 1827 * Returns the largest number of threads that have ever 1828 * simultaneously been in the pool. 1829 * 1830 * @return the number of threads 1831 */ 1832 public int getLargestPoolSize() { 1833 final ReentrantLock mainLock = this.mainLock; 1834 mainLock.lock(); 1835 try { 1836 return largestPoolSize; 1837 } finally { 1838 mainLock.unlock(); 1839 } 1840 } 1841 1842 /** 1843 * Returns the approximate total number of tasks that have ever been 1844 * scheduled for execution. Because the states of tasks and 1845 * threads may change dynamically during computation, the returned 1846 * value is only an approximation. 1847 * 1848 * @return the number of tasks 1849 */ 1850 public long getTaskCount() { 1851 final ReentrantLock mainLock = this.mainLock; 1852 mainLock.lock(); 1853 try { 1854 long n = completedTaskCount; 1855 for (Worker w : workers) { 1856 n += w.completedTasks; 1857 if (w.isLocked()) 1858 ++n; 1859 } 1860 return n + workQueue.size(); 1861 } finally { 1862 mainLock.unlock(); 1863 } 1864 } 1865 1866 /** 1867 * Returns the approximate total number of tasks that have 1868 * completed execution. Because the states of tasks and threads 1869 * may change dynamically during computation, the returned value 1870 * is only an approximation, but one that does not ever decrease 1871 * across successive calls. 1872 * 1873 * @return the number of tasks 1874 */ 1875 public long getCompletedTaskCount() { 1876 final ReentrantLock mainLock = this.mainLock; 1877 mainLock.lock(); 1878 try { 1879 long n = completedTaskCount; 1880 for (Worker w : workers) 1881 n += w.completedTasks; 1882 return n; 1883 } finally { 1884 mainLock.unlock(); 1885 } 1886 } 1887 1888 /** 1889 * Returns a string identifying this pool, as well as its state, 1890 * including indications of run state and estimated worker and 1891 * task counts. 1892 * 1893 * @return a string identifying this pool, as well as its state 1894 */ 1895 public String toString() { 1896 long ncompleted; 1897 int nworkers, nactive; 1898 final ReentrantLock mainLock = this.mainLock; 1899 mainLock.lock(); 1900 try { 1901 ncompleted = completedTaskCount; 1902 nactive = 0; 1903 nworkers = workers.size(); 1904 for (Worker w : workers) { 1905 ncompleted += w.completedTasks; 1906 if (w.isLocked()) 1907 ++nactive; 1908 } 1909 } finally { 1910 mainLock.unlock(); 1911 } 1912 int c = ctl.get(); 1913 String rs = (runStateLessThan(c, SHUTDOWN) ? "Running" : 1914 (runStateAtLeast(c, TERMINATED) ? "Terminated" : 1915 "Shutting down")); 1916 return super.toString() + 1917 "[" + rs + 1918 ", pool size = " + nworkers + 1919 ", active threads = " + nactive + 1920 ", queued tasks = " + workQueue.size() + 1921 ", completed tasks = " + ncompleted + 1922 "]"; 1923 } 1924 1925 /* Extension hooks */ 1926 1927 /** 1928 * Method invoked prior to executing the given Runnable in the 1929 * given thread. This method is invoked by thread {@code t} that 1930 * will execute task {@code r}, and may be used to re-initialize 1931 * ThreadLocals, or to perform logging. 1932 * 1933 * <p>This implementation does nothing, but may be customized in 1934 * subclasses. Note: To properly nest multiple overridings, subclasses 1935 * should generally invoke {@code super.beforeExecute} at the end of 1936 * this method. 1937 * 1938 * @param t the thread that will run task {@code r} 1939 * @param r the task that will be executed 1940 */ 1941 protected void beforeExecute(Thread t, Runnable r) { } 1942 1943 /** 1944 * Method invoked upon completion of execution of the given Runnable. 1945 * This method is invoked by the thread that executed the task. If 1946 * non-null, the Throwable is the uncaught {@code RuntimeException} 1947 * or {@code Error} that caused execution to terminate abruptly. 1948 * 1949 * <p>This implementation does nothing, but may be customized in 1950 * subclasses. Note: To properly nest multiple overridings, subclasses 1951 * should generally invoke {@code super.afterExecute} at the 1952 * beginning of this method. 1953 * 1954 * <p><b>Note:</b> When actions are enclosed in tasks (such as 1955 * {@link FutureTask}) either explicitly or via methods such as 1956 * {@code submit}, these task objects catch and maintain 1957 * computational exceptions, and so they do not cause abrupt 1958 * termination, and the internal exceptions are <em>not</em> 1959 * passed to this method. If you would like to trap both kinds of 1960 * failures in this method, you can further probe for such cases, 1961 * as in this sample subclass that prints either the direct cause 1962 * or the underlying exception if a task has been aborted: 1963 * 1964 * <pre> {@code 1965 * class ExtendedExecutor extends ThreadPoolExecutor { 1966 * // ... 1967 * protected void afterExecute(Runnable r, Throwable t) { 1968 * super.afterExecute(r, t); 1969 * if (t == null && r instanceof Future<?>) { 1970 * try { 1971 * Object result = ((Future<?>) r).get(); 1972 * } catch (CancellationException ce) { 1973 * t = ce; 1974 * } catch (ExecutionException ee) { 1975 * t = ee.getCause(); 1976 * } catch (InterruptedException ie) { 1977 * Thread.currentThread().interrupt(); // ignore/reset 1978 * } 1979 * } 1980 * if (t != null) 1981 * System.out.println(t); 1982 * } 1983 * }}</pre> 1984 * 1985 * @param r the runnable that has completed 1986 * @param t the exception that caused termination, or null if 1987 * execution completed normally 1988 */ 1989 protected void afterExecute(Runnable r, Throwable t) { } 1990 1991 /** 1992 * Method invoked when the Executor has terminated. Default 1993 * implementation does nothing. Note: To properly nest multiple 1994 * overridings, subclasses should generally invoke 1995 * {@code super.terminated} within this method. 1996 */ 1997 protected void terminated() { } 1998 1999 /* Predefined RejectedExecutionHandlers */ 2000 2001 /** 2002 * A handler for rejected tasks that runs the rejected task 2003 * directly in the calling thread of the {@code execute} method, 2004 * unless the executor has been shut down, in which case the task 2005 * is discarded. 2006 */ 2007 public static class CallerRunsPolicy implements RejectedExecutionHandler { 2008 /** 2009 * Creates a {@code CallerRunsPolicy}. 2010 */ 2011 public CallerRunsPolicy() { } 2012 2013 /** 2014 * Executes task r in the caller\'s thread, unless the executor 2015 * has been shut down, in which case the task is discarded. 2016 * 2017 * @param r the runnable task requested to be executed 2018 * @param e the executor attempting to execute this task 2019 */ 2020 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { 2021 if (!e.isShutdown()) { 2022 r.run(); 2023 } 2024 } 2025 } 2026 2027 /** 2028 * A handler for rejected tasks that throws a 2029 * {@code RejectedExecutionException}. 2030 */ 2031 public static class AbortPolicy implements RejectedExecutionHandler { 2032 /** 2033 * Creates an {@code AbortPolicy}. 2034 */ 2035 public AbortPolicy() { } 2036 2037 /** 2038 * Always throws RejectedExecutionException. 2039 * 2040 * @param r the runnable task requested to be executed 2041 * @param e the executor attempting to execute this task 2042 * @throws RejectedExecutionException always 2043 */ 2044 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { 2045 throw new RejectedExecutionException("Task " + r.toString() + 2046 " rejected from " + 2047 e.toString()); 2048 } 2049 } 2050 2051 /** 2052 * A handler for rejected tasks that silently discards the 2053 * rejected task. 2054 */ 2055 public static class DiscardPolicy implements RejectedExecutionHandler { 2056 /** 2057 * Creates a {@code DiscardPolicy}. 2058 */ 2059 public DiscardPolicy() { } 2060 2061 /** 2062 * Does nothing, which has the effect of discarding task r. 2063 * 2064 * @param r the runnable task requested to be executed 2065 * @param e the executor attempting to execute this task 2066 */ 2067 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { 2068 } 2069 } 2070 2071 /** 2072 * A handler for rejected tasks that discards the oldest unhandled 2073 * request and then retries {@code execute}, unless the executor 2074 * is shut down, in which case the task is discarded. 2075 */ 2076 public static class DiscardOldestPolicy implements RejectedExecutionHandler { 2077 /** 2078 * Creates a {@code DiscardOldestPolicy} for the given executor. 2079 */ 2080 public DiscardOldestPolicy() { } 2081 2082 /** 2083 * Obtains and ignores the next task that the executor 2084 * would otherwise execute, if one is immediately available, 2085 * and then retries execution of task r, unless the executor 2086 * is shut down, in which case task r is instead discarded. 2087 * 2088 * @param r the runnable task requested to be executed 2089 * @param e the executor attempting to execute this task 2090 */ 2091 public void rejectedExecution(Runnable r, ThreadPoolExecutor e) { 2092 if (!e.isShutdown()) { 2093 e.getQueue().poll(); 2094 e.execute(r); 2095 } 2096 } 2097 } 2098 }
public class ThreadPoolExecutor extends AbstractExecutorService
再看一下AbstractExecutorService:
1 /* 2 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20 * 21 * 22 * 23 */ 24 25 /* 26 * 27 * 28 * 29 * 30 * 31 * Written by Doug Lea with assistance from members of JCP JSR-166 32 * Expert Group and released to the public domain, as explained at 33 * http://creativecommons.org/publicdomain/zero/1.0/ 34 */ 35 36 package java.util.concurrent; 37 import java.util.*; 38 39 /** 40 * Provides default implementations of {@link ExecutorService} 41 * execution methods. This class implements the {@code submit}, 42 * {@code invokeAny} and {@code invokeAll} methods using a 43 * {@link RunnableFuture} returned by {@code newTaskFor}, which defaults 44 * to the {@link FutureTask} class provided in this package. For example, 45 * the implementation of {@code submit(Runnable)} creates an 46 * associated {@code RunnableFuture} that is executed and 47 * returned. Subclasses may override the {@code newTaskFor} methods 48 * to return {@code RunnableFuture} implementations other than 49 * {@code FutureTask}. 50 * 51 * <p><b>Extension example</b>. Here is a sketch of a class 52 * that customizes {@link ThreadPoolExecutor} to use 53 * a {@code CustomTask} class instead of the default {@code FutureTask}: 54 * <pre> {@code 55 * public class CustomThreadPoolExecutor extends ThreadPoolExecutor { 56 * 57 * static class CustomTask<V> implements RunnableFuture<V> {...} 58 * 59 * protected <V> RunnableFuture<V> newTaskFor(Callable<V> c) { 60 * return new CustomTask<V>(c); 61 * } 62 * protected <V> RunnableFuture<V> newTaskFor(Runnable r, V v) { 63 * return new CustomTask<V>(r, v); 64 * } 65 * // ... add constructors, etc. 66 * }}</pre> 67 * 68 * @since 1.5 69 * @author Doug Lea 70 */ 71 public abstract class AbstractExecutorService implements ExecutorService { 72 73 /** 74 * Returns a {@code RunnableFuture} for the given runnable and default 75 * value. 76 * 77 * @param runnable the runnable task being wrapped 78 * @param value the default value for the returned future 79 * @param <T> the type of the given value 80 * @return a {@code RunnableFuture} which, when run, will run the 81 * underlying runnable and which, as a {@code Future}, will yield 82 * the given value as its result and provide for cancellation of 83 * the underlying task 84 * @since 1.6 85 */ 86 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) { 87 return new FutureTask<T>(runnable, value); 88 } 89 90 /** 91 * Returns a {@code RunnableFuture} for the given callable task. 92 * 93 * @param callable the callable task being wrapped 94 * @param <T> the type of the callable\'s result 95 * @return a {@code RunnableFuture} which, when run, will call the 96 * underlying callable and which, as a {@code Future}, will yield 97 * the callable\'s result as its result and provide for 98 * cancellation of the underlying task 99 * @since 1.6 100 */ 101 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) { 102 return new FutureTask<T>(callable); 103 } 104 105 /** 106 * @throws RejectedExecutionException {@inheritDoc} 107 * @throws NullPointerException {@inheritDoc} 108 */ 109 public Future<?> submit(Runnable task) { 110 if (task == null) throw new NullPointerException(); 111 RunnableFuture<Void> ftask = newTaskFor(task, null); 112 execute(ftask); 113 return ftask; 114 } 115 116 /** 117 * @throws RejectedExecutionException {@inheritDoc} 118 * @throws NullPointerException {@inheritDoc} 119 */ 120 public <T> Future<T> submit(Runnable task, T result) { 121 if (task == null) throw new NullPointerException(); 122 RunnableFuture<T> ftask = newTaskFor(task, result); 123 execute(ftask); 124 return ftask; 125 } 126 127 /** 128 * @throws RejectedExecutionException {@inheritDoc} 129 * @throws NullPointerException {@inheritDoc} 130 */ 131 public <T> Future<T> submit(Callable<T> task) { 132 if (task == null) throw new NullPointerException(); 133 RunnableFuture<T> ftask = newTaskFor(task); 134 execute(ftask); 135 return ftask; 136 } 137 138 /** 139 * the main mechanics of invokeAny. 140 */ 141 private <T> T doInvokeAny(Collection<? extends Callable<T>> tasks, 142 boolean timed, long nanos) 143 throws InterruptedException, ExecutionException, TimeoutException { 144 if (tasks == null) 145 throw new NullPointerException(); 146 int ntasks = tasks.size(); 147 if (ntasks == 0) 148 throw new IllegalArgumentException(); 149 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(ntasks); 150 ExecutorCompletionService<T> ecs = 151 new ExecutorCompletionService<T>(this); 152 153 // For efficiency, especially in executors with limited 154 // parallelism, check to see if previously submitted tasks are 155 // done before submitting more of them. This interleaving 156 // plus the exception mechanics account for messiness of main 157 // loop. 158 159 try { 160 // Record exceptions so that if we fail to obtain any 161 // result, we can throw the last exception we got. 162 ExecutionException ee = null; 163 final long deadline = timed ? System.nanoTime() + nanos : 0L; 164 Iterator<? extends Callable<T>> it = tasks.iterator(); 165 166 // Start one task for sure; the rest incrementally 167 futures.add(ecs.submit(it.next())); 168 --ntasks; 169 int active = 1; 170 171 for (;;) { 172 Future<T> f = ecs.poll(); 173 if (f == null) { 174 if (ntasks > 0) { 175 --ntasks; 176 futures.add(ecs.submit(it.next())); 177 ++active; 178 } 179 else if (active == 0) 180 break; 181 else if (timed) { 182 f = ecs.poll(nanos, TimeUnit.NANOSECONDS); 183 if (f == null) 184 throw new TimeoutException(); 185 nanos = deadline - System.nanoTime(); 186 } 187 else 188 f = ecs.take(); 189 } 190 if (f != null) { 191 --active; 192 try { 193 return f.get(); 194 } catch (ExecutionException eex) { 195 ee = eex; 196 } catch (RuntimeException rex) { 197 ee = new ExecutionException(rex); 198 } 199 } 200 } 201 202 if (ee == null) 203 ee = new ExecutionException(); 204 throw ee; 205 206 } finally { 207 for (int i = 0, size = futures.size(); i < size; i++) 208 futures.get(i).cancel(true); 209 } 210 } 211 212 public <T> T invokeAny(Collection<? extends Callable<T>> tasks) 213 throws InterruptedException, ExecutionException { 214 try { 215 return doInvokeAny(tasks, false, 0); 216 } catch (TimeoutException cannotHappen) { 217 assert false; 218 return null; 219 } 220 } 221 222 public <T> T invokeAny(Collection<? extends Callable<T>> tasks, 223 long timeout, TimeUnit unit) 224 throws InterruptedException, ExecutionException, TimeoutException { 225 return doInvokeAny(tasks, true, unit.toNanos(timeout)); 226 } 227 228 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) 229 throws InterruptedException { 230 if (tasks == null) 231 throw new NullPointerException(); 232 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size()); 233 boolean done = false; 234 try { 235 for (Callable<T> t : tasks) { 236 RunnableFuture<T> f = newTaskFor(t); 237 futures.add(f); 238 execute(f); 239 } 240 for (int i = 0, size = futures.size(); i < size; i++) { 241 Future<T> f = futures.get(i); 242 if (!f.isDone()) { 243 try { 244 f.get(); 245 } catch (CancellationException ignore) { 246 } catch (ExecutionException ignore) { 247 } 248 } 249 } 250 done = true; 251 return futures; 252 } finally { 253 if (!done) 254 for (int i = 0, size = futures.size(); i < size; i++) 255 futures.get(i).cancel(true); 256 } 257 } 258 259 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks, 260 long timeout, TimeUnit unit) 261 throws InterruptedException { 262 if (tasks == null) 263 throw new NullPointerException(); 264 long nanos = unit.toNanos(timeout); 265 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size()); 266 boolean done = false; 267 try { 268 for (Callable<T> t : tasks) 269 futures.add(newTaskFor(t)); 270 271 final long deadline = System.nanoTime() + nanos; 272 final int size = futures.size(); 273 274 // Interleave time checks and calls to execute in case 275 // executor doesn\'t have any/much parallelism. 276 for (int i = 0; i < size; i++) { 277 execute((Runnable)futures.get(i)); 278 nanos = deadline - System.nanoTime(); 279 if (nanos <= 0L) 280 return futures; 281 } 282 283 for (int i = 0; i < size; i++) { 284 Future<T> f = futures.get(i); 285 if (!f.isDone()) { 286 if (nanos <= 0L) 287 return futures; 288 try { 289 f.get(nanos, TimeUnit.NANOSECONDS); 290 } catch (CancellationException ignore) { 291 } catch (ExecutionException ignore) { 292 } catch (TimeoutException toe) { 293 return futures; 294 } 295 nanos = deadline - System.nanoTime(); 296 } 297 } 298 done = true; 299 return futures; 300 } finally { 301 if (!done) 302 for (int i = 0, size = futures.size(); i < size; i++) 303 futures.get(i).cancel(true); 304 } 305 } 306 307 }
public abstract class AbstractExecutorService implements ExecutorService
再看一下ExecutorService:
1 /* 2 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20 * 21 * 22 * 23 */ 24 25 /* 26 * 27 * 28 * 29 * 30 * 31 * Written by Doug Lea with assistance from members of JCP JSR-166 32 * Expert Group and released to the public domain, as explained at 33 * http://creativecommons.org/publicdomain/zero/1.0/ 34 */ 35 36 package java.util.concurrent; 37 import java.util.List; 38 import java.util.Collection; 39 40 /** 41 * An {@link Executor} that provides methods to manage termination and 42 * methods that can produce a {@link Future} for tracking progress of 43 * one or more asynchronous tasks. 44 * 45 * <p>An {@code ExecutorService} can be shut down, which will cause 46 * it to reject new tasks. Two different methods are provided for 47 * shutting down an {@code ExecutorService}. The {@link #shutdown} 48 * method will allow previously submitted tasks to execute before 49 * terminating, while the {@link #shutdownNow} method prevents waiting 50 * tasks from starting and attempts to stop currently executing tasks. 51 * Upon termination, an executor has no tasks actively executing, no 52 * tasks awaiting execution, and no new tasks can be submitted. An 53 * unused {@code ExecutorService} should be shut down to allow 54 * reclamation of its resources. 55 * 56 * <p>Method {@code submit} extends base method {@link 57 * Executor#execute(Runnable)} by creating and returning a {@link Future} 58 * that can be used to cancel execution and/or wait for completion. 59 * Methods {@code invokeAny} and {@code invokeAll} perform the most 60 * commonly useful forms of bulk execution, executing a collection of 61 * tasks and then waiting for at least one, or all, to 62 * complete. (Class {@link ExecutorCompletionService} can be used to 63 * write customized variants of these methods.) 64 * 65 * <p>The {@link Executors} class provides factory methods for the 66 * executor services provided in this package. 67 * 68 * <h3>Usage Examples</h3> 69 * 70 * Here is a sketch of a network service in which threads in a thread 71 * pool service incoming requests. It uses the preconfigured {@link 72 * Executors#newFixedThreadPool} factory method: 73 * 74 * <pre> {@code 75 * class NetworkService implements Runnable { 76 * private final ServerSocket serverSocket; 77 * private final ExecutorService pool; 78 * 79 * public NetworkService(int port, int poolSize) 80 * throws IOException { 81 * serverSocket = new ServerSocket(port); 82 * pool = Executors.newFixedThreadPool(poolSize); 83 * } 84 * 85 * public void run() { // run the service 86 * try { 87 * for (;;) { 88 * pool.execute(new Handler(serverSocket.accept())); 89 * } 90 * } catch (IOException ex) { 91 * pool.shutdown(); 92 * } 93 * } 94 * } 95 * 96 * class Handler implements Runnable { 97 * private final Socket socket; 98 * Handler(Socket socket) { this.socket = socket; } 99 * public void run() { 100 * // read and service request on socket 101 * } 102 * }}</pre> 103 * 104 * The following method shuts down an {@code ExecutorService} in two phases, 105 * first by calling {@code shutdown} to reject incoming tasks, and then 106 * calling {@code shutdownNow}, if necessary, to cancel any lingering tasks: 107 * 108 * <pre> {@code 109 * void shutdownAndAwaitTermination(ExecutorService pool) { 110 * pool.shutdown(); // Disable new tasks from being submitted 111 * try { 112 * // Wait a while for existing tasks to terminate 113 * if (!pool.awaitTermination(60, TimeUnit.SECONDS)) { 114 * pool.shutdownNow(); // Cancel currently executing tasks 115 * // Wait a while for tasks to respond to being cancelled 116 * if (!pool.awaitTermination(60, TimeUnit.SECONDS)) 117 * System.err.println("Pool did not terminate"); 118 * } 119 * } catch (InterruptedException ie) { 120 * // (Re-)Cancel if current thread also interrupted 121 * pool.shutdownNow(); 122 * // Preserve interrupt status 123 * Thread.currentThread().interrupt(); 124 * } 125 * }}</pre> 126 * 127 * <p>Memory consistency effects: Actions in a thread prior to the 128 * submission of a {@code Runnable} or {@code Callable} task to an 129 * {@code ExecutorService} 130 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a> 131 * any actions taken by that task, which in turn <i>happen-before</i> the 132 * result is retrieved via {@code Future.get()}. 133 * 134 * @since 1.5 135 * @author Doug Lea 136 */ 137 public interface ExecutorService extends Executor { 138 139 /** 140 * Initiates an orderly shutdown in which previously submitted 141 * tasks are executed, but no new tasks will be accepted. 142 * Invocation has no additional effect if already shut down. 143 * 144 * <p>This method does not wait for previously submitted tasks to 145 * complete execution. Use {@link #awaitTermination awaitTermination} 146 * to do that. 147 * 148 * @throws SecurityException if a security manager exists and 149 * shutting down this ExecutorService may manipulate 150 * threads that the caller is not permitted to modify 151 * because it does not hold {@link 152 * java.lang.RuntimePermission}{@code ("modifyThread")}, 153 * or the security manager\'s {@code checkAccess} method 154 * denies access. 155 */ 156 void shutdown(); 157 158 /** 159 * Attempts to stop all actively executing tasks, halts the 160 * processing of waiting tasks, and returns a list of the tasks 161 * that were awaiting execution. 162 * 163 * <p>This method does not wait for actively executing tasks to 164 * terminate. Use {@link #awaitTermination awaitTermination} to 165 * do that. 166 * 167 * <p>There are no guarantees beyond best-effort attempts to stop 168 * processing actively executing tasks. For example, typical 169 * implementations will cancel via {@link Thread#interrupt}, so any 170 * task that fails to respond to interrupts may never terminate. 171 * 172 * @return list of tasks that never commenced execution 173 * @throws SecurityException if a security manager exists and 174 * shutting down this ExecutorService may manipulate 175 * threads that the caller is not permitted to modify 176 * because it does not hold {@link 177 * java.lang.RuntimePermission}{@code ("modifyThread")}, 178 * or the security manager\'s {@code checkAccess} method 179 * denies access. 180 */ 181 List<Runnable> shutdownNow(); 182 183 /** 184 * Returns {@code true} if this executor has been shut down. 185 * 186 * @return {@code true} if this executor has been shut down 187 */ 188 boolean isShutdown(); 189 190 /** 191 * Returns {@code true} if all tasks have completed following shut down. 192 * Note that {@code isTerminated} is never {@code true} unless 193 * either {@code shutdown} or {@code shutdownNow} was called first. 194 * 195 * @return {@code true} if all tasks have completed following shut down 196 */ 197 boolean isTerminated(); 198 199 /** 200 * Blocks until all tasks have completed execution after a shutdown 201 * request, or the timeout occurs, or the current thread is 202 * interrupted, whichever happens first. 203 * 204 * @param timeout the maximum time to wait 205 * @param unit the time unit of the timeout argument 206 * @return {@code true} if this executor terminated and 207 * {@code false} if the timeout elapsed before termination 208 * @throws InterruptedException if interrupted while waiting 209 */ 210 boolean awaitTermination(long timeout, TimeUnit unit) 211 throws InterruptedException; 212 213 /** 214 * Submits a value-returning task for execution and returns a 215 * Future representing the pending results of the task. The 216 * Future\'s {@code get} method will return the task\'s result upon 217 * successful completion. 218 * 219 * <p> 220 * If you would like to immediately block waiting 221 * for a task, you can use constructions of the form 222 * {@code result = exec.submit(aCallable).get();} 223 * 224 * <p>Note: The {@link Executors} class includes a set of methods 225 * that can convert some other common closure-like objects, 226 * for example, {@link java.security.PrivilegedAction} to 227 * {@link Callable} form so they can be submitted. 228 * 229 * @param task the task to submit 230 * @param <T> the type of the task\'s result 231 * @return a Future representing pending completion of the task 232 * @throws RejectedExecutionException if the task cannot be 233 * scheduled for execution 234 * @throws NullPointerException if the task is null 235 */ 236 <T> Future<T> submit(Callable<T> task); 237 238 /** 239 * Submits a Runnable task for execution and returns a Future 240 * representing that task. The Future\'s {@code get} method will 241 * return the given result upon successful completion. 242 * 243 * @param task the task to submit 244 * @param result the result to return 245 * @param <T> the type of the result 246 * @return a Future representing pending completion of the task 247 * @throws RejectedExecutionException if the task cannot be 248 * scheduled for execution 249 * @throws NullPointerException if the task is null 250 */ 251 <T> Future<T> submit(Runnable task, T result); 252 253 /** 254 * Submits a Runnable task for execution and returns a Future 255 * representing that task. The Future\'s {@code get} method will 256 * return {@code null} upon <em>successful</em> completion. 257 * 258 * @param task the task to submit 259 * @return a Future representing pending completion of the task 260 * @throws RejectedExecutionException if the task cannot be 261 * scheduled for execution 262 * @throws NullPointerException if the task is null 263 */ 264 Future<?> submit(Runnable task); 265 266 /** 267 * Executes the given tasks, returning a list of Futures holding 268 * their status and results when all complete. 269 * {@link Future#isDone} is {@code true} for each 270 * element of the returned list. 271 * Note that a <em>completed</em> task could have 272 * terminated either normally or by throwing an exception. 273 * The results of this method are undefined if the given 274 * collection is modified while this operation is in progress. 275 * 276 * @param tasks the collection of tasks 277 * @param <T> the type of the values returned from the tasks 278 * @return a list of Futures representing the tasks, in the same 279 * sequential order as produced by the iterator for the 280 * given task list, each of which has completed 281 * @throws InterruptedException if interrupted while waiting, in 282 * which case unfinished tasks are cancelled 283 * @throws NullPointerException if tasks or any of its elements are {@code null} 284 * @throws RejectedExecutionException if any task cannot be 285 * scheduled for execution 286 */ 287 <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) 288 throws InterruptedException; 289 290 /** 291 * Executes the given tasks, returning a list of Futures holding 292 * their status and results 293 * when all complete or the timeout expires, whichever happens first. 294 * {@link Future#isDone} is {@code true} for each 295 * element of the returned list. 296 * Upon return, tasks that have not completed are cancelled. 297 * Note that a <em>completed</em> task could have 298 * terminated either normally or by throwing an exception. 299 * The results of this method are undefined if the given 300 * collection is modified while this operation is in progress. 301 * 302 * @param tasks the collection of tasks 303 * @param timeout the maximum time to wait 304 * @param unit the time unit of the timeout argument 305 * @param <T> the type of the values returned from the tasks 306 * @return a list of Futures representing the tasks, in the same 307 * sequential order as produced by the iterator for the 308 * given task list. If the operation did not time out, 309 * each task will have completed. If it did time out, some 310 * of these tasks will not have completed. 311 * @throws InterruptedException if interrupted while waiting, in 312 * which case unfinished tasks are cancelled 313 * @throws NullPointerException if tasks, any of its elements, or 314 * unit are {@code null} 315 * @throws RejectedExecutionException if any task cannot be scheduled 316 * for execution 317 */ 318 <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks, 319 long timeout, TimeUnit unit) 320 throws InterruptedException; 321 322 /** 323 * Executes the given tasks, returning the result 324 * of one that has completed successfully (i.e., without throwing 325 * an exception), if any do. Upon normal or exceptional return, 326 * tasks that have not completed are cancelled. 327 * The results of this method are undefined if the given 328 * collection is modified while this operation is in progress. 329 * 330 * @param tasks the collection of tasks 331 * @param <T> the type of the values returned from the tasks 332 * @return the result returned by one of the tasks 333 * @throws InterruptedException if interrupted while waiting 334 * @throws NullPointerException if tasks or any element task 335 * subject to execution is {@code null} 336 * @throws IllegalArgumentException if tasks is empty 337 * @throws ExecutionException if no task successfully completes 338 * @throws RejectedExecutionException if tasks cannot be scheduled 339 * for execution 340 */ 341 <T> T invokeAny(Collection<? extends Callable<T>> tasks) 342 throws InterruptedException, ExecutionException; 343 344 /** 345 * Executes the given tasks, returning the result 346 * of one that has completed successfully (i.e., without throwing 347 * an exception), if any do before the given timeout elapses. 348 * Upon normal or exceptional return, tasks that have not 349 * completed are cancelled. 350 * The results of this method are undefined if the given 351 * collection is modified while this operation is in progress. 352 * 353 * @param tasks the collection of tasks 354 * @param timeout the maximum time to wait 355 * @param unit the time unit of the timeout argument 356 * @param <T> the type of the values returned from the tasks 357 * @return the result returned by one of the tasks 358 * @throws InterruptedException if interrupted while waiting 359 * @throws NullPointerException if tasks, or unit, or any element 360 * task subject to execution is {@code null} 361 * @throws TimeoutException if the given timeout elapses before 362 * any task successfully completes 363 * @throws ExecutionException if no task successfully completes 364 * @throws RejectedExecutionException if tasks cannot be scheduled 365 * for execution 366 */ 367 <T> T invokeAny(Collection<? extends Callable<T>> tasks, 368 long timeout, TimeUnit unit) 369 throws InterruptedException, ExecutionException, TimeoutException; 370 }
public interface ExecutorService extends Executor
再看一下 Executor:
1 /* 2 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20 * 21 * 22 * 23 */ 24 25 /* 26 * 27 * 28 * 29 * 30 * 31 * Written by Doug Lea with assistance from members of JCP JSR-166 32 * Expert Group and released to the public domain, as explained at 33 * http://creativecommons.org/publicdomain/zero/1.0/ 34 */ 35 36 package java.util.concurrent; 37 38 /** 39 * An object that executes submitted {@link Runnable} tasks. This 40 * interface provides a way of decoupling task submission from the 41 * mechanics of how each task will be run, including details of thread 42 * use, scheduling, etc. An {@code Executor} is normally used 43 * instead of explicitly creating threads. For example, rather than 44 * invoking {@code new Thread(new(RunnableTask())).start()} for each 45 * of a set of tasks, you might use: 46 * 47 * <pre> 48 * Executor executor = <em>anExecutor</em>; 49 * executor.execute(new RunnableTask1()); 50 * executor.execute(new RunnableTask2()); 51 * ... 52 * </pre> 53 * 54 * However, the {@code Executor} interface does not strictly 55 * require that execution be asynchronous. In the simplest case, an 56 * executor can run the submitted task immediately in the caller\'s 57 * thread: 58 * 59 * <pre> {@code 60 * class DirectExecutor implements Executor { 61 * public void execute(Runnable r) { 62 * r.run(); 63 * } 64 * }}</pre> 65 * 66 * More typically, tasks are executed in some thread other 67 * than the caller\'s thread. The executor below spawns a new thread 68 * for each task. 69 * 70 * <pre> {@code 71 * class ThreadPerTaskExecutor implements Executor { 72 * public void execute(Runnable r) { 73 * new Thread(r).start(); 74 * } 75 * }}</pre> 76 * 77 * Many {@code Executor} implementations impose some sort of 78 * limitation on how and when tasks are scheduled. The executor below 79 * serializes the submission of tasks to a second executor, 80 * illustrating a composite executor. 81 * 82 * <pre> {@code 83 * class SerialExecutor implements Executor { 84 * final Queue<Runnable> tasks = new ArrayDeque<Runnable>(); 85 * final Executor executor; 86 * Runnable active; 87 * 88 * SerialExecutor(Executor executor) { 89 * this.executor = executor; 90 * } 91 * 92 * public synchronized void execute(final Runnable r) { 93 * tasks.offer(new Runnable() { 94 * public void run() { 95 * try { 96 * r.run(); 97 * } finally { 98 * scheduleNext(); 99 * } 100 * } 101 * }); 102 * if (active == null) { 103 * scheduleNext(); 104 * } 105 * } 106 * 107 * protected synchronized void scheduleNext() { 108 * if ((active = tasks.poll()) != null) { 109 * executor.execute(active); 110 * } 111 * } 112 * }}</pre> 113 * 114 * The {@code Executor} implementations provided in this package 115 * implement {@link ExecutorService}, which is a more extensive 116 * interface. The {@link ThreadPoolExecutor} class provides an 117 * extensible thread pool implementation. The {@link Executors} class 118 * provides convenient factory methods for these Executors. 119 * 120 * <p>Memory consistency effects: Actions in a thread prior to 121 * submitting a {@code Runnable} object to an {@code Executor} 122 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a> 123 * its execution begins, perhaps in another thread. 124 * 125 * @since 1.5 126 * @author Doug Lea 127 */ 128 public interface Executor { 129 130 /** 131 * Executes the given command at some time in the future. The command 132 * may execute in a new thread, in a pooled thread, or in the calling 133 * thread, at the discretion of the {@code Executor} implementation. 134 * 135 * @param command the runnable task 136 * @throws RejectedExecutionException if this task cannot be 137 * accepted for execution 138 * @throws NullPointerException if command is null 139 */ 140 void execute(Runnable command); 141 }
public interface Executor
2.2.1、解读ThreadPoolExecutor源码
首先我们看一下构造函数:
1 /** 2 * @param corePoolSize the number of threads to keep in the pool, even 3 * if they are idle, unless {@code allowCoreThreadTimeOut} is set 4 * @param maximumPoolSize the maximum number of threads to allow in the 5 * pool 6 * @param keepAliveTime when the number of threads is greater than 7 * the core, this is the maximum time that excess idle threads 8 * will wait for new tasks before terminating. 9 * @param unit the time unit for the {@code keepAliveTime} argument 10 * @param workQueue the queue to use for holding tasks before they are 11 * executed. This queue will hold only the {@code Runnable} 12 * tasks submitted by the {@code execute} method. 13 * @param threadFactory the factory to use when the executor 14 * creates a new thread 15 * @param handler the handler to use when execution is blocked 16 * because the thread bounds and queue capacities are reached 17 */ 18 public ThreadPoolExecutor(int corePoolSize, 19 int maximumPoolSize, 20 long keepAliveTime, 21 TimeUnit unit, 22 BlockingQueue<Runnable> workQueue, 23 ThreadFactory threadFactory, 24 RejectedExecutionHandler handler) { 25 if (corePoolSize < 0 || 26 maximumPoolSize <= 0 || 27 maximumPoolSize < corePoolSize || 28 keepAliveTime < 0) 29 throw new IllegalArgumentException(); 30 if (workQueue == null || threadFactory == null || handler == null) 31 throw new NullPointerException(); 32 this.corePoolSize = corePoolSize; 33 this.maximumPoolSize = maximumPoolSize; 34 this.workQueue = workQueue; 35 this.keepAliveTime = unit.toNanos(keepAliveTime); 36 this.threadFactory = threadFactory; 37 this.handler = handler; 38 } 39 public ThreadPoolExecutor(int corePoolSize, 40 int maximumPoolSize, 41 long keepAliveTime, 42 TimeUnit unit, 43 BlockingQueue<Runnable> workQueue) { 44 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, 45 Executors.defaultThreadFactory(), defaultHandler); 46 } 47 48 49 public ThreadPoolExecutor(int corePoolSize, 50 int maximumPoolSize, 51 long keepAliveTime, 52 TimeUnit unit, 53 BlockingQueue<Runnable> workQueue, 54 ThreadFactory threadFactory) { 55 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, 56 threadFactory, defaultHandler); 57 } 58 59 public ThreadPoolExecutor(int corePoolSize, 60 int maximumPoolSize, 61 long keepAliveTime, 62 TimeUnit unit, 63 BlockingQueue<Runnable> workQueue, 64 RejectedExecutionHandler handler) { 65 this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, 66 Executors.defaultThreadFactory(), handler); 67 }
一共四个构造函数,其实本质上是调用一个最全的构造函数,其他的有默认值而已。参数的含义:
corePoolSize:核心池的大小,在创建了线程池后,默认情况下,线程池中并没有任何线程,而是等待有任务到来才创建线程去执行任务,除非调用了prestartAllCoreThreads()或者prestartCoreThread()方法预创建线程,即在没有任务到来之前就创建corePoolSize个线程或者一个线程。默认情况下,在创建了线程池后,线程池中的线程数为0,当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中;
maximumPoolSize:线程池最大线程数,它表示在线程池中最多能创建多少个线程,不包括缓存的线程数量;
keepAliveTime:表示线程没有任务执行时最多保持多久时间会终止。默认情况下,只有当线程池中的线程数大于corePoolSize时,keepAliveTime才会起作用。在线程池中的线程数大于corePoolSize时,如果一个线程空闲的时间达到keepAliveTime,则会终止;如果线程池中的线程数不超过corePoolSize时调用了allowCoreThreadTimeOut(boolean)方法,keepAliveTime参数也会起作用,直到线程池中的线程数为0;
unit:参数keepAliveTime的时间单位,有7种取值,在TimeUnit类中有7种静态属性:
1 TimeUnit.DAYS; //天 2 TimeUnit.HOURS; //小时 3 TimeUnit.MINUTES; //分钟 4 TimeUnit.SECONDS; //秒 5 TimeUnit.MILLISECONDS; //毫秒 6 TimeUnit.MICROSECONDS; //微妙 7 TimeUnit.NANOSECONDS; //纳秒
workQueue:一个阻塞队列,用来存储等待执行的任务,这个参数的选择也很重要,会对线程池的运行过程产生重大影响,一般来说,这里的阻塞队列有以下几种选择:
1 ArrayBlockingQueue 2 LinkedBlockingQueue 3 SynchronousQueue 4 PriorityBlockingQueue
ArrayBlockingQueue和PriorityBlockingQueue使用较少,一般使用LinkedBlockingQueue和SynchronousQueue,线程池的排队策略与BlockingQueue有关。
threadFactory:线程工厂,主要用来创建线程;
handler:表示当拒绝处理任务时的策略,有以下四种取值:
1 ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常。 2 ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常。 3 ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程) 4 ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务
2.2.2、线程池的状态
1 * The runState provides the main lifecycle control, taking on values: 2 * 3 * RUNNING: Accept new tasks and process queued tasks 4 * SHUTDOWN: Don\'t accept new tasks, but process queued tasks 5 * STOP: Don\'t accept new tasks, don\'t process queued tasks, 6 * and interrupt in-progress tasks 7 * TIDYING: All tasks have terminated, workerCount is zero, 8 * the thread transitioning to state TIDYING 9 * will run the terminated() hook method 10 * TERMINATED: terminated() has completed 11 * 12 * The numerical order among these values matters, to allow 13 * ordered comparisons. The runState monotonically increases over 14 * time, but need not hit each state. The transitions are: 15 * 16 * RUNNING -> SHUTDOWN 17 * On invocation of shutdown(), perhaps implicitly in finalize() 18 * (RUNNING or SHUTDOWN) -> STOP 19 * On invocation of shutdownNow() 20 * SHUTDOWN -> TIDYING 21 * When both queue and pool are empty 22 * STOP -> TIDYING 23 * When pool is empty 24 * TIDYING -> TERMINATED 25 * When the terminated() hook method has completed 26 * 27 * Threads waiting in awaitTermination() will return when the 28 * state reaches TERMINATED. 29 * 30 * Detecting the transition from SHUTDOWN to TIDYING is less 31 * straightforward than you\'d like because the queue may become 32 * empty after non-empty and vice versa during SHUTDOWN state, but 33 * we can only terminate if, after seeing that it is empty, we see 34 * that workerCount is 0 (which sometimes entails a recheck -- see 35 * below). 36 */ 37 private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); 38 private static final int COUNT_BITS = Integer.SIZE - 3; 39 private static final int CAPACITY = (1 << COUNT_BITS) - 1; 40 41 // runState is stored in the high-order bits 42 private static final int RUNNING = -1 << COUNT_BITS; 43 private static final int SHUTDOWN = 0 << COUNT_BITS; 44 private static final int STOP = 1 << COUNT_BITS; 45 private static final int TIDYING = 2 << COUNT_BITS; 46 private static final int TERMINATED = 3 << COUNT_BITS;
可以看到线程池的五种状态的基本定义以及概念,值得注意的是,将状态存储在高位。
2.2.3、任务的执行
在了解将任务提交给线程池到任务执行完毕整个过程之前,我们先来看一下ThreadPoolExecutor类中其他的一些比较重要成员变量:
1 private final BlockingQueue<Runnable> workQueue; //任务缓存队列,用来存放等待执行的任务 2 private final ReentrantLock mainLock = new ReentrantLock();
//线程池的主要状态锁,对线程池状态(比如线程池大小、runState等)的改变都要使用这个锁 3 private final HashSet<Worker> workers = new HashSet<Worker>(); //用来存放工作集 4 private volatile long keepAliveTime; //线程存活时间 5 private volatile boolean allowCoreThreadTimeOut; //是否允许为核心线程设置存活时间 6 private volatile int corePoolSize;
//核心池的大小(即线程池中的线程数目大于这个参数时,提交的任务会被放进任务缓存队列) 7 private volatile int maximumPoolSize; //线程池最大能容忍的线程数 8 private volatile int poolSize; //线程池中当前的线程数 9 private volatile RejectedExecutionHandler handler; //任务拒绝策略 10 private volatile ThreadFactory threadFactory; //线程工厂,用来创建线程 11 private int largestPoolSize; //用来记录线程池中曾经出现过的最大线程数 12 private long completedTaskCount; //用来记录已经执行完毕的任务个数
这里重点解释一下corePoolSize、maximumPoolSize、largestPoolSize三个变量。
corePoolSize在很多地方被翻译成核心池大小,其实我的理解这个就是线程池的大小。举个简单的例子:
假如有一个工厂,工厂里面有10个工人,每个工人同时只能做一件任务。因此只要当10个工人中有工人是空闲的,来了任务就分配给空闲的工人做;当10个工人都有任务在做时,如果还来了任务,就把任务进行排队等待;如果说新任务数目增长的速度远远大于工人做任务的速度,那么此时工厂主管可能会想补救措施,比如重新招4个临时工人进来;然后就将任务也分配给这4个临时工人做;如果说着14个工人做任务的速度还是不够,此时工厂主管可能就要考虑不再接收新的任务或者抛弃前面的一些任务了。当这14个工人当中有人空闲时,而新任务增长的速度又比较缓慢,工厂主管可能就考虑辞掉4个临时工了,只保持原来的10个工人,毕竟请额外的工人是要花钱的。
这个例子中的corePoolSize就是10,而maximumPoolSize就是14(10+4)。
也就是说corePoolSize就是线程池大小,maximumPoolSize是线程池的一种补救措施,即任务量突然过大时的一种补救措施。
largestPoolSize只是一个用来起记录作用的变量,用来记录线程池中曾经有过的最大线程数目,跟线程池的容量没有任何关系。
下面我们看一下任务从提交到最终执行完毕经历了哪些过程。
在ThreadPoolExecutor类中,最核心的任务提交方法是execute()方法,虽然通过submit也可以提交任务,但是实际上submit方法里面最终调用的还是execute()方法,所以我们只需要研究execute()方法的实现原理即可:
public void execute(Runnable command) { if (command == null) throw new NullPointerException(); if (poolSize >= corePoolSize || !addIfUnderCorePoolSize(command)) { if (runState == RUNNING && workQueue.offer(command)) { if (runState != RUNNING || poolSize == 0) ensureQueuedTaskHandled(command); } else if (!addIfUnderMaximumPoolSize(command)) reject(command); // is shutdown or saturated } }
1 首先,判断提交的任务command是否为null,若是null,则抛出空指针异常; 2 接着,if (poolSize >= corePoolSize || !addIfUnderCorePoolSize(command))由于是或条件运算符,所以先计算前半部分的值,如果线程池中当前线程数不小于核心池大小,那么就会直接进入下面的if语句块了。如果线程池中当前线程数小于核心池大小,则接着执行后半部分,也就是执行addIfUnderCorePoolSize(command)如果执行完addIfUnderCorePoolSize这个方法返回false,则继续执行下面的if语句块,否则整个方法就直接执行完毕了。 3 如果执行完addIfUnderCorePoolSize这个方法返回false,然后接着判断if (runState == RUNNING && workQueue.offer(command))如果当前线程池处于RUNNING状态,则将任务放入任务缓存队列;如果当前线程池不处于RUNNING状态或者任务放入缓存队列失败,则执行addIfUnderMaximumPoolSize(command);如果执行addIfUnderMaximumPoolSize方法失败,则执行reject()方法进行任务拒绝处理。 4 回到前面: 5 if (runState == RUNNING && workQueue.offer(command))这句的执行,如果说当前线程池处于RUNNING状态且将任务放入任务缓存队列成功,则继续进行判断: 6 if (runState != RUNNING || poolSize == 0)这句判断是为了防止在将此任务添加进任务缓存队列的同时其他线程突然调用shutdown或者shutdownNow方法关闭了线程池的一种应急措施。如果是这样就执行ensureQueuedTaskHandled(command)进行应急处理,从名字可以看出是保证添加到任务缓存队列中的任务得到处理。
我们看2个关键方法的实现:addIfUnderCorePoolSize和addIfUnderMaximumPoolSize:
1 private boolean addIfUnderCorePoolSize(Runnable firstTask) { 2 Thread t = null; 3 final ReentrantLock mainLock = this.mainLock; 4 mainLock.lock(); 5 try { 6 if (poolSize < corePoolSize && runState == RUNNING) 7 t = addThread(firstTask); //创建线程去执行firstTask任务 8 } finally { 9 mainLock.unlock(); 10 } 11 if (t == null) 12 return false; 13 t.start(); 14 return true; 15 }
这个是addIfUnderCorePoolSize方法的具体实现,从名字可以看出它的意图就是当低于核心池大小时执行的方法。下面看其具体实现,首先获取到锁,因为这地方涉及到线程池状态的变化,先通过if语句判断当前线程池中的线程数目是否小于核心池大小,有人也许会有疑问,前面在execute()方法中不是已经判断过了吗,只有线程池当前线程数目小于核心池大小才会执行addIfUnderCorePoolSize方法的,为何这地方还要继续判断?原因很简单,前面的判断过程中并没有加锁,因此可能在execute方法判断的时候poolSize小于corePoolSize,而判断完之后,在其他线程中又向线程池提交了任务,就可能导致poolSize不小于corePoolSize了,所以需要在这个地方继续判断。然后接着判断线程池的状态是否为RUNNING,原因也很简单,因为有可能在其他线程中调用了shutdown或者shutdownNow方法。然后就是执行
t = addThread(firstTask);
这个方法非常关键,传进去的参数为提交的任务,返回值为Thread类型。然后接着在下面判断t是否为空,为空则表明创建线程失败(即poolSize>=corePoolSize或者runState不等于RUNNING),否则调用t.start()方法启动线程。
我们来看一下addThread方法的实现:
1 private Thread addThread(Runnable firstTask) { 2 Worker w = new Worker(firstTask); 3 Thread t = threadFactory.newThread(w); //创建一个线程,执行任务 4 if (t != null) { 5 w.thread = t; //将创建的线程的引用赋值为w的成员变量 6 workers.add(w); 7 int nt = ++poolSize; //当前线程数加1 8 if (nt > largestPoolSize) 9 largestPoolSize = nt; 10 } 11 return t; 12 }
在addThread方法中,首先用提交的任务创建了一个Worker对象,然后调用线程工厂threadFactory创建了一个新的线程t,然后将线程t的引用赋值给了Worker对象的成员变量thread,接着通过workers.add(w)将Worker对象添加到工作集当中。
下面我们看一下Worker类的实现:
1 private final class Worker implements Runnable { 2 private final ReentrantLock runLock = new ReentrantLock(); 3 private Runnable firstTask; 4 volatile long completedTasks; 5 Thread thread; 6 Worker(Runnable firstTask) { 7 this.firstTask = firstTask; 8 } 9 boolean isActive() { 10 return runLock.isLocked(); 11 } 12 void interruptIfIdle() { 13 final ReentrantLock runLock = this.runLock; 14 if (runLock.tryLock()) { 15 try { 16 if (thread != Thread.currentThread()) 17 thread.interrupt(); 18 } finally { 19 runLock.unlock(); 20 } 21 } 22 } 23 void interruptNow() { 24 thread.interrupt(); 25 } 26 27 private void runTask(Runnable task) { 28 final ReentrantLock runLock = this.runLock; 29 runLock.lock(); 30 try { 31 if (runState < STOP && 32 Thread.interrupted() && 33 runState >= STOP) 34 boolean ran = false; 35 beforeExecute(thread, task); //beforeExecute方法是ThreadPoolExecutor类的一个方法,没有具体实现,用户可以根据 36 //自己需要重载这个方法和后面的afterExecute方法来进行一些统计信息,比如某个任务的执行时间等 37 try { 38 task.run(); 39 ran = true; 40 afterExecute(task, null); 41 ++completedTasks; 42 } catch (RuntimeException ex) { 43 if (!ran) 44 afterExecute(task, ex); 45 throw ex; 46 } 47 } finally { 48 runLock.unlock(); 49 } 50 } 51 52 public void run() { 53 try { 54 Runnable task = firstTask; 55 firstTask = null; 56 while (task != null || (task = getTask()) != null) { 57 runTask(task); 58 task = null; 59 } 60 } finally { 61 workerDone(this); //当任务队列中没有任务时,进行清理工作 62 } 63 } 64 }
Worker类的实现
它实际上实现了Runnable接口,因此上面的Thread t = threadFactory.newThread(w);效果跟Thread t = new Thread(w);这句的效果基本一样,相当于传进去了一个Runnable任务,在线程t中执行这个Runnable。既然Worker实现了Runnable接口,那么自然最核心的方法便是run()方法了:
1 public void run() { 2 try { 3 Runnable task = firstTask; 4 firstTask = null; 5 while (task != null || (task = getTask()) != null) { 6 runTask(task); 7 task = null; 8 } 9 } finally { 10 workerDone(this); 11 } 12 }
从run方法的实现可以看出,它首先执行的是通过构造器传进来的任务firstTask,在调用runTask()执行完firstTask之后,在while循环里面不断通过getTask()去取新的任务来执行,那么去哪里取呢?自然是从任务缓存队列里面去取,getTask是ThreadPoolExecutor类中的方法,并不是Worker类中的方法,下面是getTask方法的实现:
1 Runnable getTask() { 2 for (;;) { 3 try { 4 int state = runState; 5 if (state > SHUTDOWN) 6 return null; 7 Runnable r; 8 if (state == SHUTDOWN) // Help drain queue 9 r = workQueue.poll(); 10 else if (poolSize > corePoolSize || allowCoreThreadTimeOut) //如果线程数大于核心池大小或者允许为核心池线程设置空闲时间, 11 //则通过poll取任务,若等待一定的时间取不到任务,则返回null 12 r = workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS); 13 else 14 r = workQueue.take(); 15 if (r != null) 16 return r; 17 if (workerCanExit()) { //如果没取到任务,即r为null,则判断当前的worker是否可以退出 18 if (runState >= SHUTDOWN) // Wake up others 19 interruptIdleWorkers(); //中断处于空闲状态的worker 20 return null; 21 } 22 // Else retry 23 } catch (InterruptedException ie) { 24 // On interruption, re-check runState 25 } 26 } 27 }
在getTask中,先判断当前线程池状态,如果runState大于SHUTDOWN(即为STOP或者TERMINATED),则直接返回null。如果runState为SHUTDOWN或者RUNNING,则从任务缓存队列取任务。
如果当前线程池的线程数大于核心池大小corePoolSize或者允许为核心池中的线程设置空闲存活时间,则调用poll(time,timeUnit)来取任务,这个方法会等待一定的时间,如果取不到任务就返回null。
然后判断取到的任务r是否为null,为null则通过调用workerCanExit()方法来判断当前worker是否可以退出,我们看一下workerCanExit()的实现:
1 private boolean workerCanExit() { 2 final ReentrantLock mainLock = this.mainLock; 3 mainLock.lock(); 4 boolean canExit; 5 //如果runState大于等于STOP,或者任务缓存队列为空了 6 //或者允许为核心池线程设置空闲存活时间并且线程池中的线程数目大于1 7 try { 8 canExit = runState >= STOP || 9 workQueue.isEmpty() || 10 (allowCoreThreadTimeOut && 11 poolSize > Math.max(1, corePoolSize)); 12 } finally { 13 mainLock.unlock(); 14 } 15 return canExit; 16 }
也就是说如果线程池处于STOP状态、任务队列已为空或者允许为核心池线程设置空闲存活时间并且线程数大于1时,允许worker退出。如果允许worker退出,则调用interruptIdleWorkers()中断处于空闲状态的worker:
1 void interruptIdleWorkers() { 2 final ReentrantLock mainLock = this.mainLock; 3 mainLock.lock(); 4 try { 5 for (Worker w : workers) //实际上调用的是worker的interruptIfIdle()方法 6 w.interruptIfIdle(); 7 } finally { 8 mainLock.unlock(); 9 } 10 }
从实现可以看出,它实际上调用的是worker的interruptIfIdle()方法,在worker的interruptIfIdle()方法中:
1 void interruptIfIdle() { 2 final ReentrantLock runLock = this.runLock; 3 if (runLock.tryLock()) { 4 //注意这里,是调用tryLock()来获取锁的,因为如果当前worker正在执行任务,锁已经被获取了,是无法获取到锁的 5 //如果成功获取了锁,说明当前worker处于空闲状态 6 try { 7 if (thread != Thread.currentThread()) 8 thread.interrupt(); 9 } finally { 10 runLock.unlock(); 11 } 12 } 13 }
这里有一个非常巧妙的设计方式,假如我们来设计线程池,可能会有一个任务分派线程,当发现有线程空闲时,就从任务缓存队列中取一个任务交给空闲线程执行。但是在这里,并没有采用这样的方式,因为这样会要额外地对任务分派线程进行管理,无形地会增加难度和复杂度,这里直接让执行完任务的线程去任务缓存队列里面取任务来执行。
我们再看addIfUnderMaximumPoolSize方法的实现,这个方法的实现思想和addIfUnderCorePoolSize方法的实现思想非常相似,唯一的区别在于addIfUnderMaximumPoolSize方法是在线程池中的线程数达到了核心池大小并且往任务队列中添加任务失败的情况下执行的:
1 private boolean addIfUnderMaximumPoolSize(Runnable firstTask) { 2 Thread t = null; 3 final ReentrantLock mainLock = this.mainLock; 4 mainLock.lock(); 5 try { 6 if (poolSize < maximumPoolSize && runState == RUNNING) 7 t = addThread(firstTask); 8 } finally { 9 mainLock.unlock(); 10 } 11 if (t == null) 12 return false; 13 t.start(); 14 return true; 15 }
其实它和addIfUnderCorePoolSize方法的实现基本一模一样,只是if语句判断条件中的poolSize < maximumPoolSize不同而已。
到这里,我们对任务提交给线程池之后到被执行的整个过程有了一个基本的了解,下面总结一下:
1 1)首先,要清楚corePoolSize和maximumPoolSize的含义; 2 2)其次,要知道Worker是用来起到什么作用的; 3 3)要知道任务提交给线程池之后的处理策略,这里总结一下主要有4点: 4 如果当前线程池中的线程数目小于corePoolSize,则每来一个任务,就会创建一个线程去执行这个任务; 5 如果当前线程池中的线程数目>=corePoolSize,则每来一个任务,会尝试将其添加到任务缓存队列当中,若添加成功,则该任务会等待空闲线程将其取出去执行;若添加失败(一般来说是任务缓存队列已满),则会尝试创建新的线程去执行这个任务; 6 如果当前线程池中的线程数目达到maximumPoolSize,则会采取任务拒绝策略进行处理; 7 如果线程池中的线程数量大于 corePoolSize时,如果某线程空闲时间超过keepAliveTime,线程将被终止,直至线程池中的线程数目不大于corePoolSize;如果允许为核心池中的线程设置存活时间,那么核心池中的线程空闲时间超过keepAliveTime,线程也会被终止。
2.2.4、线程池中的线程初始化
默认情况下,创建线程池之后,线程池中是没有线程的,需要提交任务之后才会创建线程。
在实际中如果需要线程池创建之后立即创建线程,可以通过以下两个方法办到:
1 prestartCoreThread():初始化一个核心线程; 2 prestartAllCoreThreads():初始化所有核心线程
下面是这2个方法的实现:
1 public boolean prestartCoreThread() { 2 return addIfUnderCorePoolSize(null); //注意传进去的参数是null 3 } 4 5 public int prestartAllCoreThreads() { 6 int n = 0; 7 while (addIfUnderCorePoolSize(null))//注意传进去的参数是null 8 ++n; 9 return n; 10 }
注意上面传进去的参数是null,根据第2小节的分析可知如果传进去的参数为null,则最后执行线程会阻塞在getTask方法中的 r = workQueue.take();即等待任务队列中有任务。
2.2.5、任务缓存队列及排队策略
在前面我们多次提到了任务缓存队列,即workQueue,它用来存放等待执行的任务。
workQueue的类型为BlockingQueue<Runnable>,通常可以取下面三种类型:
1 ArrayBlockingQueue:基于数组的先进先出队列,此队列创建时必须指定大小; 2 LinkedBlockingQueue:基于链表的先进先出队列,如果创建时没有指定此队列大小,则默认为Integer.MAX_VALUE; 3 synchronousQueue:这个队列比较特殊,它不会保存提交的任务,而是将直接新建一个线程来执行新来的任务。
2.2.6、任务拒绝策略
当线程池的任务缓存队列已满并且线程池中的线程数目达到maximumPoolSize,如果还有任务到来就会采取任务拒绝策略,通常有以下四种策略:
1 ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常。 2 ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常。 3 ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程) 4 ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务
2.2.7、线程池的关闭
ThreadPoolExecutor提供了两个方法,用于线程池的关闭,分别是shutdown()和shutdownNow(),其中:
1 shutdown():不会立即终止线程池,而是要等所有任务缓存队列中的任务都执行完后才终止,但再也不会接受新的任务 2 shutdownNow():立即终止线程池,并尝试打断正在执行的任务,并且清空任务缓存队列,返回尚未执行的任务
2.2.8、线程池容量的动态调整
ThreadPoolExecutor提供了动态调整线程池容量大小的方法:setCorePoolSize()和setMaximumPoolSize(),
setCorePoolSize:设置核心池大小
setMaximumPoolSize:设置线程池最大能创建的线程数目大小
当上述参数从小变大时,ThreadPoolExecutor进行线程赋值,还可能立即创建新的线程来执行任务。
2.2.9、合理配置线程池大小
一般需要根据任务的类型来配置线程池大小:
如果是CPU密集型任务,就需要尽量压榨CPU,参考值可以设为 NCPU+1
如果是IO密集型任务,参考值可以设置为2*NCPU
当然,这只是一个参考值,具体的设置还需要根据实际情况进行调整,比如可以先将线程池大小设置为参考值,再观察任务运行情况和系统负载、资源利用率来进行适当调整。
三、常用的线程池
3.1、newFixedThreadPool
固定大小的线程池,可以指定线程池的大小,该线程池corePoolSize和maximumPoolSize相等,阻塞队列使用的是LinkedBlockingQueue,大小为整数最大值。该线程池中的线程数量始终不变,当有新任务提交时,线程池中有空闲线程则会立即执行,如果没有,则会暂存到阻塞队列。对于固定大小的线程池,不存在线程数量的变化。同时使用无界的LinkedBlockingQueue来存放执行的任务。当任务提交十分频繁的时候LinkedBlockingQueue 迅速增大,存在着耗尽系统资源的问题。而且在线程池空闲时,即线程池中没有可运行任务时,它也不会释放工作线程,还会占用一定的系统资源,需要shutdown。
1 public static ExecutorService newFixedThreadPool(int var0) { 2 return new ThreadPoolExecutor(var0, var0, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue()); 3 } 4 public static ExecutorService newFixedThreadPool(int var0, ThreadFactory var1) { 5 return new ThreadPoolExecutor(var0, var0, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(), var1); 6 }
1 package com.threadpool.test; 2 3 import java.util.concurrent.ExecutorService; 4 import java.util.concurrent.Executors; 5 6 public class NewFixedThreadPoolTest { 7 8 private static Runnable getThread(final int i) { 9 return new Runnable() { 10 public void run() { 11 try { 12 Thread.sleep(500); 13 } catch (InterruptedException e) { 14 e.printStackTrace(); 15 } 16 System.out.println(i); 17 } 18 }; 19 } 20 21 public static void main(String args[]) { 22 ExecutorService fixPool = Executors.newFixedThreadPool(5); 23 for (int i = 0; i < 100; i++) { 24 fixPool.execute(getThread(i)); 25 } 26 fixPool.shutdown(); 27 } 28 }
View Code
1 0 2 1 3 2 4 3 5 4 6 5 7 6 8 7 9 8 10 9 11 10 12 11 13 12 14 13 15 14 16 15 17 16 18 17 19 19 20 18 21 20 22 21 23 22 24 23 25 24 26 25 27 26 28 27 29 28 30 29 31 33 32 32 33 31 34 30 35 34 36 35 37 36 38 37 39 38 40 39 41 40 42 42 43 41 44 43 45 44 46 45 47 47 48 46 49 49 50 48 51 50 52 51 53 52 54 54 55 53 56 55 57 56 58 57 59 58 60 59 61 62 62 60 63 61 64 63 65 64 66 65 67 66 68 67 69 69 70 68 71 70 72 71 73 72 74 74 75 73 76 75 77 76 78 77 79 79 80 78 81 80 82 82 83 81 84 83 85 84 86 85 87 87 88 86 89 89 90 88 91 90 92 92 93 91 94 94 95 93 96 95 97 96 98 97 99 99 100 98
结果
3.2、newSingleThreadExecutor
单个线程线程池,只有一个线程的线程池,阻塞队列使用的是LinkedBlockingQueue,若有多余的任务提交到线程池中,则会被暂存到阻塞队列,待空闲时再去执行。按照先入先出的顺序执行任务。
1 public static ExecutorService newSingleThreadExecutor() { 2 return new Executors.FinalizableDelegatedExecutorService(new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue())); 3 } 4 public static ExecutorService newSingleThreadExecutor(ThreadFactory var0) { 5 return new Executors.FinalizableDelegatedExecutorService(new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(), var0)); 6 }
1 package com.threadpool.test; 2 3 import java.util.concurrent.ExecutorService; 4 import java.util.concurrent.Executors; 5 6 7 public class NewSingleThreadExecutorTest { 8 private static Runnable getThread(final int i){ 9 return new Runnable() { 10 public void run() { 11 try { 12 13 Thread.sleep(500); 14 } catch (InterruptedException e) { 15 e.printStackTrace(); 16 } 17 System.out.println(i); 18 } 19 }; 20 } 21 22 public static void main(String args[]) throws InterruptedException { 23 ExecutorService singPool = Executors.newSingleThreadExecutor(); 24 for (int i=0;i<100;i++){ 25 singPool.execute(getThread(i)); 26 } 27 singPool.shutdown(); 28 } 29 }
View Code
1 0 2 1 3 2 4 3 5 4 6 5 7 6 8 7 9 8 10 9 11 10 12 11 13 12 14 13 15 14 16 15 17 16 18 17 19 18 20 19 21 20 22 21 23 22 24 23 25 24 26 25 27 26 28 27 29 28 30 29 31 30 32 31 33 32 34 33 35 34 36 35 37 36 38 37 39 38 40 39 41 40 42 41 43 42 44 43 45 44 46 45 47 46 48 47 49 48 50 49 51 50 52 51 53 52 54 53 55 54 56 55 57 56 58 57 59 58 60 59 61 60 62 61 63 62 64 63 65 64 66 65 67 66 68 67 69 68 70 69 71 70 72 71 73 72 74 73 75 74 76 75 77 76 78 77 79 78 80 79 81 80 82 81 83 82 84 83 85 84 86 85 87 86 88 87 89 88 90 89 91 90 92 91 93 92 94 93 95 94 96 95 97 96 98 97 99 98 100 99
结果
3.3、newCachedThreadPool
缓存线程池,缓存的线程默认存活60秒。线程的核心池corePoolSize大小为0,核心池最大为Integer.MAX_VALUE,阻塞队列使用的是SynchronousQueue。是一个直接提交的阻塞队列,总会迫使线程池增加新的线程去执行新的任务。在没有任务执行时,当线程的空闲时间超过keepAliveTime(60秒),则工作线程将会终止被回收,当提交新任务时,如果没有空闲线程,则创建新线程执行任务,会导致一定的系统开销。如果同时又大量任务被提交,而且任务执行的时间不是特别快,那么线程池便会新增出等量的线程池处理任务,这很可能会很快耗尽系统的资源。
1 public static ExecutorService newCachedThreadPool() { 2 return new ThreadPoolExecutor(0, 2147483647, 60L, TimeUnit.SECONDS, new SynchronousQueue()); 3 } 4 public static ExecutorService newCachedThreadPool(ThreadFactory var0) { 5 return new ThreadPoolExecutor(0, 2147483647, 60L, TimeUnit.SECONDS, new SynchronousQueue(), var0); 6 }
1 package com.threadpool.test; 2 3 import java.util.concurrent.ExecutorService; 4 import java.util.concurrent.Executors; 5 6 public class NewCachedThreadPoolTest { 7 private static Runnable getThread(final int i){ 8 return new Runnable() { 9 public void run() { 10 try { 11 Thread.sleep(1000); 12 }catch (Exception e){ 13 14 } 15 System.out.println(i); 16 } 17 }; 18 } 19 20 public static void main(String args[]){ 21 ExecutorService cachePool = Executors.newCachedThreadPool(); 22 for (int i=1;i<=100;i++){ 23 cachePool.execute(getThread(i)); 24 } 25 } 26 }
View Code
1 4 2 3 3 2 4 1 5 7 6 6 7 5 8 14 9 13 10 12 11 11 12 10 13 8 14 15 15 9 16 18 17 16 18 17 19 19 20 24 21 23 22 22 23 21 24 20 25 30 26 29 27 28 28 27 29 26 30 25 31 37 32 36 33 35 34 34 35 33 36 32 37 31 38 39 39 38 40 40 41 44 42 45 43 46 44 43 45 42 46 41 47 100 48 98 49 99 50 97 51 95 52 96 53 85 54 86 55 84 56 87 57 88 58 89 59 90 60 91 61 92 62 93 63 94 64 71 65 72 66 73 67 74 68 75 69 76 70 77 71 78 72 79 73 80 74 81 75 82 76 83 77 63 78 64 79 65 80 66 81 67 82 69 83 56 84 58 85 68 86 60 87 59 88 61 89 57 90 62 91 70 92 50 93 52 94 54 95 49 96 47 97 55 98 53 99 51 100 48
结果
3.4、newScheduledThreadPool
定时线程池,该线程池可用于周期性地去执行任务,通常用于周期性的同步数据。scheduleAtFixedRate:是以固定的频率去执行任务,周期是指每次执行任务成功执行之间的间隔。schedultWithFixedDelay:是以固定的延时去执行任务,延时是指上一次执行成功之后和下一次开始执行的之前的时间。
public static ScheduledExecutorService newScheduledThreadPool(int var0) { return new ScheduledThreadPoolExecutor(var0); } public static ScheduledExecutorService newScheduledThreadPool(int var0, ThreadFactory var1) { return new ScheduledThreadPoolExecutor(var0, var1); }
1 package com.threadpool.test; 2 3 import java.util.concurrent.Executors; 4 import java.util.concurrent.ScheduledExecutorService; 5 import java.util.concurrent.TimeUnit; 6 7 public class NewScheduledThreadPoolTest { 8 public static void main(String args[]) { 9 10 ScheduledExecutorService ses = Executors.newScheduledThreadPool(10); 11 ses.scheduleAtFixedRate(new Runnable() { 12 public void run() { 13 try { 14 Thread.sleep(4000); 15 System.out.println(Thread.currentThread().getId() + "执行了"); 16 } catch (InterruptedException e) { 17 e.printStackTrace(); 18 } 19 } 20 }, 0, 2, TimeUnit.SECONDS); 21 } 22 }
View Code
1 9执行了 2 9执行了 3 11执行了 4 9执行了 5 12执行了 6 11执行了 7 13执行了 8 9执行了 9 14执行了 10 12执行了 11 15执行了 12 11执行了 13 16执行了 14 13执行了 15 17执行了 16 9执行了 17 18执行了 18 14执行了 19 19执行了 20 12执行了 21 15执行了 22 11执行了 23 16执行了 24 13执行了 25 17执行了 26 17执行了 27 18执行了 28 。。。。
结果
四、总结
线程池的概念本质上就是复用的思维,线程复用,从而用来节省内存和CPU资源,对我们的编程具有着重要的指导意义。