string stringbuilder stringbuffer三者的区别

从JDK源码看,String、StringBuilder、StringBuffer都是存放在char[] 数组字符串。
简单看下三者的部分源码:
String定义属性和构造方法:

public final class String
    implements java.io.Serializable, Comparable<String>, CharSequence {
   
    private final char value[];
 public String() {
        this.value = "".value;
    }    
    public String(String original) {
        this.value = original.value;
        this.hash = original.hash;
    }

    public String(char value[]) {
        this.value = Arrays.copyOf(value, value.length);
    }

StringBuilder源码:

public final class StringBuilder
    extends AbstractStringBuilder
    implements java.io.Serializable, CharSequence
{

   
    public StringBuilder() {
        super(16);
    }

    public StringBuilder(int capacity) {
        super(capacity);
    }


    public StringBuilder(String str) {
        super(str.length() + 16);
        append(str);
    }

StringBuffer源码:

public final class StringBuffer
    extends AbstractStringBuilder
    implements java.io.Serializable, CharSequence
{

    private transient char[] toStringCache;
 
    public StringBuffer() {
        super(16);
    }

比较明显的是:
String 中定义的char[] 数组是用final 修饰,所以,String 是不可变字符序列,而StringBuilder和StringBuffer是可变字符序列;
如果Sting 需要改变则需要重新创建新对象;
StringBuffer 和 StringBuilder 都继承 AbstractStringBuilder类,他们在初始化时,都是调用父类的构造器。

接下来,我们在简单看下AbstractStringBuilder类源码:

abstract class AbstractStringBuilder implements Appendable, CharSequence {
    /**
     * The value is used for character storage.
     */
    char[] value;

    /**
     * The count is the number of characters used.
     */
    int count;

    /**
     * This no-arg constructor is necessary for serialization of subclasses.
     */
    AbstractStringBuilder() {
    }

    /**
     * Creates an AbstractStringBuilder of the specified capacity.
     */
    AbstractStringBuilder(int capacity) {
        value = new char[capacity];
    }

可以看到 AbstractStringBuilder 其实也定义了char[] 数组,不同的是,AbstractStringBuilder 中的char[] 数组可以可变的,在细看一点,可以看到AbstractStringBuilder 有扩容的方法:

private int newCapacity(int minCapacity) {
        // overflow-conscious code
        int newCapacity = (value.length << 1) + 2;
        if (newCapacity - minCapacity < 0) {
            newCapacity = minCapacity;
        }
        return (newCapacity <= 0 || MAX_ARRAY_SIZE - newCapacity < 0)
            ? hugeCapacity(minCapacity)
            : newCapacity;
    }

    private int hugeCapacity(int minCapacity) {
        if (Integer.MAX_VALUE - minCapacity < 0) { // overflow
            throw new OutOfMemoryError();
        }
        return (minCapacity > MAX_ARRAY_SIZE)
            ? minCapacity : MAX_ARRAY_SIZE;
    }

接下来我们继续,看下String 、StringBuffer 和 StringBuilder的常用方法:
String的常用方法:

public String substring(int beginIndex) {
        if (beginIndex < 0) {
            throw new StringIndexOutOfBoundsException(beginIndex);
        }
        int subLen = value.length - beginIndex;
        if (subLen < 0) {
            throw new StringIndexOutOfBoundsException(subLen);
        }
        return (beginIndex == 0) ? this : new String(value, beginIndex, subLen);
    }

   
    public String substring(int beginIndex, int endIndex) {
        if (beginIndex < 0) {
            throw new StringIndexOutOfBoundsException(beginIndex);
        }
        if (endIndex > value.length) {
            throw new StringIndexOutOfBoundsException(endIndex);
        }
        int subLen = endIndex - beginIndex;
        if (subLen < 0) {
            throw new StringIndexOutOfBoundsException(subLen);
        }
        return ((beginIndex == 0) && (endIndex == value.length)) ? this
                : new String(value, beginIndex, subLen);
    }

StringBuilder的常用方法:

 @Override
    public StringBuilder append(int i) {
        super.append(i);
        return this;
    }

    @Override
    public StringBuilder append(long lng) {
        super.append(lng);
        return this;
    }

    @Override
    public StringBuilder append(float f) {
        super.append(f);
        return this;
    }

StringBuffer的常用方法:

 @Override
    public synchronized StringBuffer append(CharSequence s, int start, int end)
    {
        toStringCache = null;
        super.append(s, start, end);
        return this;
    }

    @Override
    public synchronized StringBuffer append(char[] str) {
        toStringCache = null;
        super.append(str);
        return this;
    }

从它们的常用方法可以看出:
String 每次返回的都是新字符串,所以我们使用String的方法操作字符串后不影响原来的字符串;
StringBuffer 和 StringBuilder 返回的都是this,也就是对象本身,所有我们可以在代码中连着写append(xx).append(xxx).append(xxx);
不同的是StringBuffer的方法就加了synchronized 也就是我们说的线程安全。
总结一下:

 

 

 

 

String StringBuilder StringBuffer效率(性能)测试

我们通过各自拼接10000字符串来比较一下三者在执行时对时间和对内存资源的占用。
下面是测试代码:

package com.xzlf.string;

public class TestString {
	public static void main(String[] args) {
		// 使用 String 进行字符拼接
		String str = "";
		long num1 = Runtime.getRuntime().freeMemory();// 获取系统剩余内存空间
		long time1 = System.currentTimeMillis();
		for (int i = 0; i < 10000; i++) {
			str += i; // 相当于产生了5000个对象
		}
		long num2 = Runtime.getRuntime().freeMemory();
		long time2 = System.currentTimeMillis();
		System.out.println("String 占用了内存:" + (num1 - num2));
		System.out.println("String 占用了时间:" + (time2 - time1));
		
		// 使用 StringBuilder 进行字符串拼接
		StringBuilder sb = new StringBuilder("");
		long num3 = Runtime.getRuntime().freeMemory();
		long time3 = System.currentTimeMillis();
		for (int i = 0; i < 10000; i++) {
			sb.append(i);
		}
		long num4 = Runtime.getRuntime().freeMemory();
		long time4 = System.currentTimeMillis();
		System.out.println("StringBuilder 占用了内存:" + (num3 - num4));
		System.out.println("StringBuilder 占用了时间:" + (time4 - time3));
		
		// 使用 StringBuilder 进行字符串拼接
		StringBuffer sb2 = new StringBuffer("");
		long num5 = Runtime.getRuntime().freeMemory();
		long time5 = System.currentTimeMillis();
		for (int i = 0; i < 10000; i++) {
			sb2.append(i);
		}
		long num6 = Runtime.getRuntime().freeMemory();
		long time6 = System.currentTimeMillis();
		System.out.println("StringBuffer 占用了内存:" + (num5 - num6));
		System.out.println("StringBuffer 占用了时间:" + (time6 - time5));
		
	}
}

以上代码运行结果为:
在这里插入图片描述
可以看到,String创建了大量无用对象,消耗了大量内存耗时上大概是StringBuffer 和 builder的100倍。

当然,我们只循环了10000次,StringBuilder的优势不是很明显,为了防止java 虚拟机 jvm 垃圾回收机制的干扰 我们我StringBuilder 和 StringBuffer 单独拿出来吧循环次数加到10万次、100万次和1000万次测试:
代码吧String部分注释掉,由于循环次数较多,jvm 在运行时会有垃圾回收,内存对比会不正确,也先注释:

package com.xzlf.string;

public class TestString {
	public static void main(String[] args) {
		// 使用 String 进行字符拼接
//		String str = "";
//		long num1 = Runtime.getRuntime().freeMemory();// 获取系统剩余内存空间
//		long time1 = System.currentTimeMillis();
//		for (int i = 0; i < 10000; i++) {
//			str += i; // 相当于产生了5000个对象
//		}
//		long num2 = Runtime.getRuntime().freeMemory();
//		long time2 = System.currentTimeMillis();
//		System.out.println("String 占用了内存:" + (num1 - num2));
//		System.out.println("String 占用了时间:" + (time2 - time1));
		
		// 使用 StringBuilder 进行字符串拼接
		StringBuilder sb = new StringBuilder("");
		long num3 = Runtime.getRuntime().freeMemory();
		long time3 = System.currentTimeMillis();
		for (int i = 0; i < 10000000; i++) {
			sb.append(i);
		}
		long num4 = Runtime.getRuntime().freeMemory();
		long time4 = System.currentTimeMillis();
//		System.out.println("StringBuilder 占用了内存:" + (num3 - num4));
		System.out.println("StringBuilder 占用了时间:" + (time4 - time3));
		
		// 使用 StringBuilder 进行字符串拼接
		StringBuffer sb2 = new StringBuffer("");
		long num5 = Runtime.getRuntime().freeMemory();
		long time5 = System.currentTimeMillis();
		for (int i = 0; i < 10000000; i++) {
			sb2.append(i);
		}
		long num6 = Runtime.getRuntime().freeMemory();
		long time6 = System.currentTimeMillis();
//		System.out.println("StringBuffer 占用了内存:" + (num5 - num6));
		System.out.println("StringBuffer 占用了时间:" + (time6 - time5));
		
	}
}

我这边测试10万次结果为:
在这里插入图片描述
100万次结果为:
在这里插入图片描述
1000万次结果为:
在这里插入图片描述
在数量太少的情况下,StringBuilder 在StringBuffer加锁的情况下,并没有体现出优势,反而StringBuffer 更胜一筹。
这种情况相信很多测试过的小伙伴也应该遇到过???

对于这种情况,其实也不难理解,append的操作本质还是操作char[] 数组,我们还是继续看源码,
StringBuffer比StringBuilder多了一个缓冲区,
我们看下StringBuffer的toString方法:

@Override
    public synchronized String toString() {
        if (toStringCache == null) {
            toStringCache = Arrays.copyOfRange(value, 0, count);
        }
        return new String(toStringCache, true);
    }

StringBuilder 的toString()方法:

 @Override
    public String toString() {
        // Create a copy, don\'t share the array
        return new String(value, 0, count);
    }

我们可以看到StringBuffer的缓存有数据时,就直接在缓存区取,而StringBuilder每次都是直接copy。这样StringBuffer 相对StringBuilder来说其实是做了一个性能上的优化,所有只有当数量足够大,StringBuffer的缓冲区填补不了加锁影响的性能时,StringBuilder才在性能上展现出了它的优势

版权声明:本文为xzlf原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/xzlf/p/12681547.html