需求: 导入文件,查看原始数据 将人口数据和各州简称数据进行合并 将合并的数据中重复的abbreviation列进行删除 查看存在缺失数据的列 找到有哪些state/region使得state的值为NaN,进行去重操作 为找到的这些state/region的state项补上正确的值,从而去除掉state这一列的所有NaN 合并各州面积数据areas 我们会发现area(sq.mi)这一列有缺失数据,找出是哪些行 去除含有缺失数据的行 找出2010年的全民人口数据 计算各州的人口密度 排序,并找出人口密度最高的五个州 df.sort_values()

import numpy as np
from pandas import DataFrame,Series
import pandas as pd

# 导入文件,查看原始数据
abb = pd.read_csv(\'./state-abbrevs.csv\')
pop = pd.read_csv(\'./state-population.csv\')
area = pd.read_csv(\'./state-areas.csv\')

# 查看abb前三行数据
abb.head(3)
#结果:>>>
     state      abbreviation
0    Alabama    AL
1    Alaska     AK
2    Arizona    AZ

# 查看pop前三行数据
pop.head(3)
#结果:
     state/region    ages      year    population
0    AL          under18    2012    1117489.0
1    AL          total     2012    4817528.0
2    AL          under18    2010    1130966.0

# 查看area前三行数据
area.head(3)
#结果:>>>
      state     area (sq. mi)
0       Alabama    52423
1       Alaska     656425
2       Arizona    114006

# 将人口数据和各州简称数据进行合并
abb_pop = pd.merge(abb,pop,left_on="abbreviation",right_on="state/region",how="outer")
abb_pop.head(3)
#结果>>>
    state      abbreviation    state/region    ages      year    population
0    Alabama    AL          AL          under18     2012    1117489.0
1    Alabama    AL          AL          total      2012    4817528.0
2    Alabama    AL          AL          under18     2010    1130966.0

# 将合并的数据中重复的abbreviation列进行删除
abb_pop.drop(labels="abbreviation", axis=1, inplace=True)
abb_pop.head(3)
#结果>>>
    state      state/region    ages      year    population
0      Alabama    AL          under18    2012    1117489.0
1      Alabama    AL          total     2012    4817528.0
2      Alabama    AL          under18    2010    1130966.0

# 查看存在缺失数据的列
abb_pop.isnull().any(axis=0)
#结果>>>
state            True
state/region     False
ages             False
year             False
population       True
dtype: bool

#找到有哪些state/region使得state的值为NaN,进行去重操作
# 1.找到state的值为空
abb_pop["state"].isnull()
# 2.通过state的值找出所有为空的行
abb_pop.loc[abb_pop["state"].isnull()]
# 去重
abb_pop.loc[abb_pop["state"].isnull()]["state/region"].unique()
# 结果>>>
array([\'USA\',\'PR\'], dtype=object)

# 为找到的这些state/region的state项补上正确的值,从而去除掉state这一列的所有NaN
# 1.找出USA对应state列中的空值
abb_pop["state/region"] == "USA"
# 2.取出USA对应的行数据
abb_pop.loc[abb_pop["state/region"] == "USA"]
# 3.取出USA对应的行数据的索引值
indexs = abb_pop.loc[abb_pop["state/region"] == "USA"].index
# 4.将USA对应的空值覆盖成对应的值
abb_pop.loc[indexs,"state"] = \'United States\'

# 1.找出PR对应state列中的空值
abb_pop["state/region"] == "PR"
# 2.取出PR对应的行数据
abb_pop.loc[abb_pop["state/region"] == "PR"]
# 3.取出PR对应的行数据的索引值
indexs = abb_pop.loc[abb_pop["state/region"] == "PR"].index
# 4.将USA对应的空值覆盖成对应的值
abb_pop.loc[indexs,"state"] = \'pppr\'

# 合并各州面积数据areas
abb_pop_area = pd.merge(abb_pop,area, how="outer")
abb_pop_area.head()
#结果:>>>
     state      state/region    ages      year      population    area (sq. mi)
0    Alabama    AL          under18    2012.0    1117489.0      52423.0
1    Alabama    AL          total      2012.0    4817528.0      52423.0
2    Alabama    AL          under18    2010.0    1130966.0      52423.0
3    Alabama    AL          total      2010.0    4785570.0      52423.0
4    Alabama    AL          under18    2011.0    1125763.0      52423.0

# 我们会发现area(sq.mi)这一列有缺失数据,找出是哪些行
abb_pop_area["area (sq. mi)"].isnull()
# 去除含有缺失数据的行
indexs = abb_pop_area.loc[abb_pop_area["area (sq. mi)"].isnull()].index
abb_pop_area.drop(labels=indexs,axis=0,inplace=True)
# 找出2010年的全民人口数据
df_2010 = abb_pop_area.query("year == 2010 & ages == \'total\'")
df_2010.head()
#结果>>>
    state      state/region    ages     year      population    area (sq. mi)
3      Alabama     AL          total    2010.0    4785570.0      52423.0
91     Alaska      AK          total    2010.0    713868.0       656425.0
101    Arizona     AZ          total    2010.0    6408790.0      114006.0
189    Arkansas    AR          total    2010.0    2922280.0      53182.0
197    California  CA          total    2010.0    37333601.0     163707.0

# 计算各州的人口密度
abb_pop_area["midu"] = abb_pop_area["population"] / abb_pop_area["area (sq. mi)"]
abb_pop_area.head()
#结果>>>
    state      state/region    ages       year      population    area (sq. mi)  midu
0    Alabama    AL          under18    2012.0    1117489.0      52423.0      21.316769
1    Alabama    AL          total      2012.0    4817528.0      52423.0      91.897221
2    Alabama    AL          under18    2010.0    1130966.0      52423.0      21.573851
3    Alabama    AL          total      2010.0    4785570.0      52423.0      91.287603
4    Alabama    AL          under18    2011.0    1125763.0      52423.0      21.474601

# 排序,并找出人口密度最高的五个州 df.sort_values()
abb_pop_area.sort_values(by="midu",axis=0,ascending=False)

 

版权声明:本文为WiseAdministrator原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/WiseAdministrator/articles/11349103.html