机器学习——深度学习(Deep Learning)
Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,近期研究了机器学习中一些深度学习的相关知识,本文给出一些非常实用的资料和心得。
Key Words:有监督学习与无监督学习。分类、回归。密度预计、聚类,深度学习,Sparse DBN,
1. 有监督学习和无监督学习
给定一组数据(input,target)为Z=(X,Y)。
有监督学习:最常见的是regression & classification。
regression:Y是实数vector。回归问题,就是拟合(X。Y)的一条曲线,使得下式cost function L最小。
classification:Y是一个finite number,能够看做类标号。分类问题须要首先给定有label的数据训练分类器,故属于有监督学习过程。分类问题中,cost function L(X,Y)是X属于类Y的概率的负对数。
。当中fi(X)=P(Y=i
| X);
无监督学习:无监督学习的目的是学习一个function f,使它能够描写叙述给定数据的位置分布P(Z)。 包含两种:density
estimation & clustering.
density estimation就是密度预计,预计该数据在任何位置的分布密度
clustering就是聚类。将Z聚集几类(如K-Means),或者给出一个样本属于每一类的概率。
因为不须要事先依据训练数据去train聚类器。故属于无监督学习。
PCA和非常多deep learning算法都属于无监督学习。
Depth 概念:depth:
the length of the longest path from an input to an output.
Deep Architecture 的三个特点:深度不足会出现故障;人脑具有一个深度结构(每深入一层进行一次abstraction,由lower-layer的features描写叙述而成的feature构成,就是上篇中提到的feature
hierarchy问题,并且该hierarchy是一个稀疏矩阵);认知过程逐层进行。逐步抽象
3篇文章介绍Deep
Belief Networks,作为DBN的breakthrough
3.Deep Learning Algorithm 的核心思想:
把learning hierarchy 看做一个network。则
①无监督学习用于每一层网络的pre-train。
②每次用无监督学习仅仅训练一层,将其训练结果作为其higher一层的输入;
③用监督学习去调整全部层
这里不负责任地理解下,举个样例在Autoencoder中,无监督学习学的是feature。有监督学习用在fine-tuning.
比方每个neural network 学出的hidden layer就是feature,作为下一次神经网络无监督学习的input……这样一次次就学出了一个deep的网络,每一层都是上一次学习的hidden layer。
再用softmax classifier去fine-tuning这个deep network的系数。
这三个点是Deep Learning Algorithm的精髓,我在上一篇文章中也有讲到,当中第三部分:Learning
Features Hierachy & Sparse DBN就讲了怎样运用Sparse DBN进行feature学习。
4. Deep Learning 经典阅读材料:
- The monograph or review paper Learning Deep Architectures for AI (Foundations
& Trends in Machine Learning, 2009).- The ICML 2009 Workshop on Learning Feature Hierarchies webpage has a list
of references.- The LISA public wiki has a reading
list and a bibliography.- Geoff Hinton has readings from last year’s NIPS
tutorial.阐述Deep learning主要思想的三篇文章:
- Hinton, G. E., Osindero, S. and Teh, Y., A
fast learning algorithm for deep belief netsNeural Computation 18:1527-1554, 2006- Yoshua Bengio, Pascal Lamblin, Dan Popovici and Hugo Larochelle, Greedy
Layer-Wise Training of Deep Networks, in J. Platt et al. (Eds), Advances in Neural Information Processing Systems 19 (NIPS 2006), pp. 153-160, MIT Press, 2007<比較了RBM和Auto-encoder>- Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra and Yann LeCun Efficient
Learning of Sparse Representations with an Energy-Based Model, in J. Platt et al. (Eds), Advances in Neural Information Processing Systems (NIPS 2006), MIT Press,
2007<将稀疏自编码用于回旋结构(convolutional architecture)>06年后。大批deep learning文章涌现。感兴趣的能够看下大牛Yoshua Bengio的综述Learning
deep architectures for {AI},只是本文非常长,非常长……
5. Deep Learning工具—— Theano
Theano是deep
learning的Python库,要求首先熟悉Python语言和numpy,建议读者先看Theano
basic tutorial,然后依照Getting
Started 下载相关数据并用gradient descent的方法进行学习。
学习了Theano的基本方法后,能够练习写下面几个算法:
有监督学习:
- Logistic Regression – using Theano for something
simple - Multilayer perceptron – introduction to layers
- Deep Convolutional Network – a simplified
version of LeNet5
无监督学习:
- Auto Encoders, Denoising Autoencoders – description of autoencoders
- Stacked Denoising Auto-Encoders – easy steps into unsupervised pre-training for deep nets
- Restricted Boltzmann Machines – single layer generative RBM model
-
Deep Belief Networks – unsupervised generative pre-training
of stacked RBMs followed by supervised fine-tuning
最后呢,推荐给大家基本ML的书籍:
- Chris Bishop, “Pattern Recognition and Machine Learning”, 2007
- Simon Haykin, “Neural Networks: a Comprehensive
Foundation”, 2009 (3rd edition) - Richard O. Duda, Peter E. Hart and David G. Stork, “Pattern Classification”, 2001 (2nd edition)
关于Machine Learning很多其它的学习资料将继续更新,敬请关注本博客和新浪微博Sophia_qing。
References:
1. Brief Introduction to ML for AI
3.A tutorial on deep learning – Video
注明:转自Rachel Zhang的专栏http://blog.csdn.net/abcjennifer/article/details/7826917