本来来自 :http://blog.csdn.net/u010402786/article/details/51682917

一、书籍

Deep learning (2015)

作者:Bengio

下载地址:http://www.deeplearningbook.org/


二、理论

1.在神经网络中提取知识

Distilling the knowledge in a neural network

作者:G. Hinton et al.

2.深度神经网络很易受骗:高信度预测无法识别的图片

Deep neural networks are easily fooled: High confidence predictions for unrecognizable images

作者:A. Nguyen et al.

3.深度神经网络特征的可迁移性如何?

How transferable are features in deep neural networks? (2014),

作者:J. Yosinski et al.

4.深挖卷积网络的各个细节

Return of the Devil in the Details: Delving Deep into Convolutional Nets (2014)

作者:K. Chatfield et al.

5.为什么无监督预训练对深度学*有帮助?

Why does unsupervised pre-training help deep learning (2010)

作者:D. Erhan et al. (Bengio)

6.理解训练深度前馈神经网络的难点

Understanding the difficulty of training deep feedforward neural networks (2010)

作者:X. Glorot and Y. Bengio


三、优化/网络结构

  简介:本部分从文献7到文献14为神经网络优化的一些方法,尤其是文献7的批归一化更是在业界产生巨大的影响;文献15到文献22为网络结构的变化,包括全卷积神经网络等。这些参考文献都是非常具有参考价值的干货!

7.Batch Normalization 算法:通过减少内部协变量转化加速深度网络的训练(推荐)

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (2015)

作者:S. Loffe and C. Szegedy (Google)

8.Dropout:一个预防神经网络过拟合的简单方式

Dropout: A simple way to prevent neural networks from overfitting (2014)

作者:N. Srivastava et al. (Hinton)

9.Adam:一个随机优化的方法

Adam: A method for stochastic optimization (2014)

作者:D. Kingma and J. Ba

10.论深度学*领域初始化和动量的重要性

On the importance of initialization and momentum in deep learning (2013)

作者:I. Sutskever et al. (Hinton)

11.使用 Dropconnect 的神经网络正则化

Regularization of neural networks using dropconnect (2013)

作者:L. Wan et al. (LeCun)

12.超参数最优化的随机搜索

Random search for hyper-parameter optimization (2012)

作者:J. Bergstra and Y. Bengio

13.图像识别中的深度残差学*

Deep residual learning for image recognition (2016)

作者:K. He et al. (Microsoft)

14.用于物体精准检测和分割的基于区域的卷积网络

Region-based convolutional networks for accurate object detection and segmentation (2016)

作者:R. Girshick et al.(Microsoft)

15.更深的卷积网络

Going deeper with convolutions (2015)

作者:C. Szegedy et al. (Google)

16.快速 R-CNN 网络

Fast R-CNN (2015)

作者: R. Girshick (Microsoft)

16.更快速的 R-CNN 网络:使用区域网络的实时物体检测

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks (2015)

作者: S. Ren et al.

17.用于语义分割的全卷积神经网络

Fully convolutional networks for semantic segmentation (2015)

作者:J. Long et al.

18.大规模图像识别的深度卷积网络

Very deep convolutional networks for large-scale image recognition (2014)

作者:K. Simonyan and A. Zisserman

19.OverFeat:使用卷积网络融合识别、本地化和检测

OverFeat: Integrated recognition, localization and detection using convolutional networks (2014)

作者:P. Sermanet et al.(LeCun)

20.可视化以及理解卷积网络

Visualizing and understanding convolutional networks (2014)

作者:M. Zeiler and R. Fergus

21.Maxout 网络

Maxout networks (2013)

作者:I. Goodfellow et al. (Bengio)

22.Network In Network 深度网络架构

Network in network (2013)

作者:M. Lin et al.


四、图像

1.使用卷积神经网络在自然环境下阅读文本

Reading text in the wild with convolutional neural networks (2016)

作者:M. Jaderberg et al. (DeepMind)

2.Imagenet 大规模视觉识别挑战赛

Imagenet large scale visual recognition challenge (2015)

作者:O. Russakovsky et al.

3.DRAW:一个用于图像生成的循环神经网络

DRAW: A recurrent neural network for image generation (2015)

作者:K. Gregor et al.

4.对精确的物体检测和语义切割更为丰富的特征分层

Rich feature hierarchies for accurate object detection and semantic segmentation (2014)

作者: R. Girshick et al.

5.使用卷积神经网络学*和迁移中层图像表征

Learning and transferring mid-Level image representations using convolutional neural networks (2014)

作者:M. Oquab et al.

6.DeepFace:在面部验证任务中接近人类表现

DeepFace: Closing the Gap to Human-Level Performance in Face Verification (2014)

作者:Y. Taigman et al. (Facebook)


五、视频 / 人类行为

1.利用卷积神经网络进行大规模视频分类(2014)

Large-scale video classification with convolutional neural networks (2014)

作者:A. Karpathy et al. (FeiFei)

2.DeepPose:利用深度神经网络评估人类姿势

DeepPose: Human pose estimation via deep neural networks (2014)

作者:A. Toshev and C. Szegedy (Google)

3.用于视频中动作识别的双流卷积网络

Two-stream convolutional networks for action recognition in videos (2014)

作者:K. Simonyan et al.

4.用于人类动作识别的 3D 卷积神经网络(这篇文章针对连续视频帧进行处理,是个不错的)

3D convolutional neural networks for human action recognition (2013)

作者:S. Ji et al.

5.带有改进轨迹的动作识别

Action recognition with improved trajectories (2013)

作者:H. Wang and C. Schmid

6.用独立子空间分析,学*用于动作识别的等级恒定的时空特征

Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis (2011)

作者:Q. Le et al


六、自然语言处理

1.用 RNN 编码——解码器学*短语表征,实现统计机器翻译

Learning phrase representations using RNN encoder-decoder for statistical machine translation (2014)

作者:K. Cho et al.(Bengio)

2.一个为句子*模的卷积神经网络

A convolutional neural network for modelling sentences (2014)

作者:N. Kalchbrenner et al.

3.用于句子分类的卷积神经网络

Convolutional neural networks for sentence classification (2014)

作者:Y. Kim

4.斯坦福 coreNLP 自然语言处理工具

The stanford coreNLP natural language processing toolkit (2014)

作者:C. Manning et al.

5.基于情感树库应用于情感组合研究的递归深度网络模型

Recursive deep models for semantic compositionality over a sentiment treebank (2013)

作者:R. Socher et al.

6.基于语言模型的循环神经网络

Recurrent neural network based language model (2010)

作者:T. Mikolov et al.

7.自动语音识别:一种深度学*的方法

Automatic Speech Recognition – A Deep Learning Approach (Book, 2015)

作者:D. Yu and L. Deng (Microsoft)

8.使用深度循环网络进行语音识别

Speech recognition with deep recurrent neural networks (2013)

作者:A. Graves (Hinton)

9.基于上下文预训练的深度神经网络在大规模词表语音识别中的应用

Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition (2012)

作者:G. Dahl et al.

10.使用深度信念网络进行声学*模

Acoustic modeling using deep belief networks (2012)

作者:A. Mohamed et al. (Hinton)


七、无监督学*

1.自编码变量贝叶斯

Auto-Encoding Variational Bayes (2013)

作者:D. Kingma and M. Welling

2.用大规模无监督学*搭*高水*特征

Building high-level features using large scale unsupervised learning (2013)

作者:Q. Le et al.

3.无监督特征学*中单层网络分析

An analysis of single-layer networks in unsupervised feature learning (2011)

作者:A. Coates et al.

4.堆栈降噪解码器:在本地降噪标准的深度网络中学*有用的表征

Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion (2010)

作者:P. Vincent et al. (Bengio)

5.训练受限波兹曼机的实践指南

A practical guide to training restricted boltzmann machines (2010)

作者:G. Hinton


八、开源架构

1.TensorFlow:异构分布式系统上的大规模机器学*

TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems (2016)

作者:M. Abadi et al. (Google)

2.Theano:一个针对快速计算数学表达公式的Python框架

Theano: A Python framework for fast computation of mathematical expressions

作者:R. Al-Rfou et al. (Bengio)

3.MatConvNet: 针对matlab 的卷积神经网络

MatConvNet: Convolutional neural networks for matlab (2015)

作者:A. Vedaldi and K. Lenc

4.Caffe:快速特征嵌入的卷积结构

Caffe: Convolutional architecture for fast feature embedding (2014) 
作者: Y. Jia et al.


九、2016最新论文

1.对立学*推论

Adversarially Learned Inference (2016)

作者:V. Dumoulin et al.

2.理解卷积神经网络

Understanding Convolutional Neural Networks (2016)

作者:J. Koushik

3.SqueezeNet 模型:达到 AlexNet 水*的准确率,却使用缩减 50 倍的参数以及< 1MB 的模型大小

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model size (2016)

作者:F. Iandola et al.

4.学*搭*问答神经网络

Learning to Compose Neural Networks for Question Answering (2016)

作者:J. Andreas et al.

5.用深度学*和大规模数据搜集,学*眼手协调的机器人抓取

Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection (2016)(Google)

作者:S. Levine et al.

6.将人隔离在外:贝叶斯优化算法回顾

Taking the human out of the loop: A review of bayesian optimization (2016)

作者:B. Shahriari et al.

7.Eie:压缩神经网络的高效推理引擎

Eie: Efficient inference engine on compressed deep neural network (2016) 
作者:S. Han et al.

8.循环神经网络的自适性计算时间

Adaptive Computation Time for Recurrent Neural Networks (2016)

作者:A. Graves

9.像素循环神经网络

Pixel Recurrent Neural Networks (2016)

作者:A. van den Oord et al. (DeepMind)

10.LSTM:一场搜索空间的奥德赛之旅

LSTM: A search space odyssey (2016)

作者:K. Greff et al.


备注:本博客的所有论文下载链接: http://pan.baidu.com/s/1pL1UWRp 
密码: 3kfj

版权声明:本文为ooon原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/ooon/p/5601888.html