今天发现一个怪现象,在训练keras时,发现不使用GPU进行计算,而是采用CPU进行计算,导致计算速度很慢。

用如下代码可检测tensorflow的能使用设备情况:

from tensorflow.python.client import device_lib
print(device_lib.list_local_devices()) 

可用设备为:

[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}]  

原来只有一个CPU设备可用了。于是检查下tensorflow的版本情况:

pip3 list

各应用版本为:

tensorflow          1.10.1 
tensorflow-gpu      1.9.0 

原来我升级了tensorflow版本,忘记了升级tensorflow-gpu版本,现在两个版本有代差,而tensorflow默认选择版本高的CPU版本来计算了。

那就升级tensorflow-gpu吧:

pip3 install --index-url http://pypi.douban.com/simple --trusted-host pypi.douban.com --upgrade tensorflow-gpu

再次检测可用设备情况,结果如下:

2018-09-04 10:51:22.996654: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1405] Found device 0 with properties: 
name: GeForce GTX 1060 5GB major: 6 minor: 1 memoryClockRate(GHz): 1.7085
pciBusID: 0000:01:00.0
totalMemory: 4.94GiB freeMemory: 4.23GiB
2018-09-04 10:51:22.996666: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1484] Adding visible gpu devices: 0
2018-09-04 10:51:23.189923: I tensorflow/core/common_runtime/gpu/gpu_device.cc:965] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-09-04 10:51:23.189953: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971]      0 
2018-09-04 10:51:23.189959: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] 0:   N 
2018-09-04 10:51:23.190105: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1097] Created TensorFlow device (/device:GPU:0 with 3969 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060 5GB, pci bus id: 0000:01:00.0, compute capability: 6.1)
[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 15761951721866580392
, name: "/device:GPU:0"
device_type: "GPU"
memory_limit: 4161994752
locality {
  bus_id: 1
  links {
  }
}
incarnation: 16066826866269340415
physical_device_desc: "device: 0, name: GeForce GTX 1060 5GB, pci bus id: 0000:01:00.0, compute capability: 6.1"
]

 

版权声明:本文为hutao722原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/hutao722/p/9583214.html