只赢不亏的买股票的方法
采用“贪心”策略,实现买股票只赢不亏~~~
前言
大家好,我是「程序员小熊」。今天给大家带来一道与「贪心算法」相关的题目,这道题同时也是字节、苹果和亚马逊等互联网大厂的面试题,即力扣上的第 122 题-买卖股票的最佳时机 II。
本文主要介绍「贪心」的策略来解答此题,供大家参考,希望对大家有所帮助。
买卖股票的最佳时机 II
解题思路
贪心算法是通过做出一系列选择来求出问题的最优解,在每个决策点,它做出当时看来最佳的选择。通过「局部最优」的选择,寄希望实现「全局最优解」。
「举例」
以 prices = [1,4,2,3,7] 为例子,求获得的最大利润,如下图示。
遍历数组 prices,第一天一定买入;
尔后判断判断第二天的价格是否大于第一天,大于则卖出(局部最优);
卖出后,如果后面一天的价格小于当天的价格,则当天不买,防止亏本;
以此类推,其采用贪心策略买卖股票的完整决策过程如下动图示
Show me the Code
「C」
- 1 int maxProfit(int* prices, int pricesSize){
- 2 int ans = 0;
- 3 for (int i = 1; i < pricesSize; ++i) {
- 4 /* 后一天的价格比前一天高,则卖出(当前最佳策略) */
- 5 ans += fmax(0, prices[i] - prices[i - 1]);
- 6 }
- 7
- 8 return ans;
- 9 }
View Code
「C++」
- 1 int maxProfit(vector<int>& prices) {
- 2 int ans = 0;
- 3 for (int i = 1; i < prices.size(); ++i) {
- 4 ans += max(0, prices[i] - prices[i - 1]);
- 5 }
- 6
- 7 return ans;
- 8 }
View Code
「Java」
- 1 int maxProfit(int[] prices) {
- 2 int ans = 0;
- 3 for (int i = 1; i < prices.length; ++i) {
- 4 ans += Math.max(0, prices[i] - prices[i - 1]);
- 5 }
- 6
- 7 return ans;
- 8 }
View Code
「Python3」
- 1 def maxProfit(self, prices: List[int]) -> int:
- 2 ans = 0
- 3 for i in range(1, len(prices)):
- 4 ans += max(0, prices[i] - prices[i - 1])
- 5
- 6 return ans
View Code
「Golang」
- 1 func maxProfit(prices []int) int {
- 2 ans := 0
- 3 for i := 1; i < len(prices); i++ {
- 4 profit := prices[i] - prices[i-1]
- 5 if profit > 0 {
- 6 ans += profit
- 7 }
- 8 }
- 9
- 10 return ans
- 11 }
View Code
「复杂度分析」
时间复杂度:「O(n)」,其中 n 是数组的长度,需要遍历一遍数组。
空间复杂度:「O(1)」,未开辟额外的空间。