KMP算法详解。字符串匹配走一波!

本文大部分摘自szy学长的ppt《string》中的KMP部分。

%%%膜拜szy大神orz

1.概述

KMP 算法是用来解决单模匹配问题的一种算法。

如果暴力的进行单模匹配,那么时间复杂度为O(nm)。

KMP 算法通过对模式串的预处理优化了复杂度。

2.求next数组

为了叙述方便,设模式串长度为n,主串长度为m。

将模式串称为s1,主串称为s2,下标从1 开始。

我们首先对模式串预处理出一个next 数组。

next[i] 表示最大的x,满足s1[1 : x – 1] 是s1[1 : i – 1] 的后缀。

这个数组记录了失配时,模式串指针移动的目标位置。

求next[i] 时,考虑维护一个位置j,初始时为next[i – 1]。

如果s1[j] = s1[i -1],那么next[i] 显然等于j + 1。

如果s1[j] != s1[i – 1],那么此时需要将j 向前移动到next[j] 的位置。

一直将j 移动到next[j] 的位置,直到j = 0 或s1[j] = s1[i – 1]。

此时next[i] 等于j + 1。

由于next 是最长公共前后缀,因此在j 的移动过程中一定会经过next[i] – 1 的位置。

 1 void getnx()
 2 {
 3     nx[1]=0;
 4     for(int i=2,j=1;i<=n;)
 5     {
 6         nx[i]=j;
 7         while(j&&s1[j]!=s1[i])j=nx[j];
 8         j++,i++;
 9     }
10 }

3.匹配

在匹配过程中,设在主串中匹配到位置i,模式串中匹配到位置j。

首先如果s2[i] = s1[j],当前位置匹配成功,此时可以把i 和j 同时移动到下一个位置。

否则发生失配,需要进行调整,我们将j 置为next[j],然后继续匹配。

同样由于next 是最长公共前后缀,因此在j 的移动过程中不会跳过可能匹配的位置。

并且模式串中j 之前的部分一定可以匹配。

void kmp()
{
    for(int i=1,j=1;i<=m;)
    {
        while(j&&s1[j]!=s2[i])j=nx[j];
        if(j==n)
        {
            // 此时找到了一个能够匹配的位置 
            j=nx[j];
        }
        else j++,i++;
    }
}

可以发现两部分代码有很大相似之处。

其实可以把求next 数组过程看做用模式串与自身匹配的过程。

4.时间复杂度

在求next 的过程中,j 指针每向后移动一步,i 指针就会向后移动一步。

而j 指针每延next 移动一次,就会向前移动大于等于一步。

由于i 指针会向后移动O(n) 次,因此j 指针也只会向后移动O(n) 次,因此向前同样最多移动O(n) 次。

因此求next 数组部分复杂度为O(n)。

与之类似,可以得出匹配过程的复杂度为O(m)。

因此KMP 算法的总复杂度为O(n + m)。

尾声:

总之,KMP算法是处理字符串匹配问题的一大利器。

搭配字符串上的DP可以说是……咳咳……很有趣……

(下篇高能预告)

版权声明:本文为cervusy原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.cnblogs.com/cervusy/p/9481643.html