欧拉数 e=2.71828...(Eulers_Number)
From: http://blog.sina.com.cn/s/blog_5d03fffb0100xa6t.html
欧拉数 e=2.71828…(Eulers_Number)
1. 提起欧拉数,差不多都知道。但是在中学里通常不太喜欢它,因为使用的对数以10位底计算对数仿佛要亲切些,因为以10位底的对数叫做常用对数。另外一个叫 做自然对数的东西中学你少用,原因是自然对数的底到底是多少不知道。实际上,现在人类都不知道,只知道这个数e——欧拉数的计算方法,但是它的准确数字也 许我们永远也不知道。e是一个无理数,这一点应该是被林德曼证明了的,用现在的办法不难证明。
6630353547594571382178525166427 (100位准确数字)。
例如
不难看出n=365这种办法才有2位有效数字。后面将要学会一些新的算法,比如用
表示阶乘。
可以简单算出:
e ≈2;
e
≈2.7182818011463844797178130…;
e
≈2.71828182845904523536028747135266249775724709369995957496696762772341\
9298053548538722835117660645043…;
如上的100位数字,实际上可以得出701位有效数字。
有一个关于财主的故事。说的是一个财主特别贪财,他喜欢放债。放出去的债年利率为100%,也就是说借1块钱,一年后要还给他2块钱。他想,干脆按照半年50%的利率算,结果
也就是说借出1块钱,一年后要还2.25元。
于是他进一步想,不如每天都来算利息,那利率就是1/365,这样
2.7145674820218743032…
他还有一天算两次或更多的想法,不过他的管家劝他还是算了吧。尽管财主不死心,只好作罢。
另外,大家都经常用Google。有人说这个词实际上起源于Googol,它等于10100,就是1后面有100个0。有趣的是据Wiki介绍,
Google在2004年首次公开募股,集资额不是通常的整头数,而是$2,718,281,828,这当然是取最接近整数的e*十亿美元。